Nonmonotone and Monotone Active-Set Methods for Image Restoration, Part 1: Convergence Analysis

Active-set methods based on augmented Lagrangian smoothing of nondifferentiable optimization problems arising in image restoration are discussed. One-dimensional image restoration problems and two different formulations of two-dimensional image restoration problems are given. Both nonmonotone and monotone active-set algorithms are described and finite-step convergence of the algorithms is considered.

[1]  A. V. Levy,et al.  On the method of multipliers for mathematical programming problems , 1972 .

[2]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[3]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[4]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[5]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[6]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[7]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[8]  J. Zolésio,et al.  Springer series in Computational Mathematics , 1992 .

[9]  Fadil Santosa,et al.  Recovery of Blocky Images from Noisy and Blurred Data , 1996, SIAM J. Appl. Math..

[10]  D. Dobson,et al.  Analysis of regularized total variation penalty methods for denoising , 1996 .

[11]  K. Kunisch,et al.  Regularization of linear least squares problems by total bounded variation , 1997 .

[12]  L. Vese,et al.  A Variational Method in Image Recovery , 1997 .

[13]  D. Dobson,et al.  Convergence of an Iterative Method for Total Variation Denoising , 1997 .

[14]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[15]  Karl Kunisch,et al.  Some applications of BV functions in optimal controls and calculus of variations , 1998 .

[16]  K. Kunisch,et al.  Regularization by Functions of Bounded Variation and Applications to Image Enhancement , 1999 .

[17]  K. Kunisch,et al.  An active set strategy based on the augmented Lagrangian formulation for image restoration , 1999 .

[18]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[19]  K. Majava,et al.  Nonmonotone and Monotone Active-Set Methods for Image Restoration, Part 2: Numerical Results , 2000 .

[20]  Kazufumi Ito,et al.  Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces , 2000 .