Image watermarking via fractional polar harmonic transforms

Abstract. Invariant harmonic transforms based on the fractional Fourier transform are proposed in this paper. The so-called fractional polar harmonic transforms (FrPHTs) with the order parameter α are first defined, which are generalizations of the PHTs. Second, a watermarking scheme is presented and discussed in detail associated with the newly defined FrPHTs. Finally, the simulations are clearly performed to verify the well capabilities of the transforms on image watermarking, which show that the proposed transforms with suitable parameters outperform the traditional PHTs. In addition, the experimental results also demonstrate that the order parameter α has an effect on the performance of FrPHTs in the image watermarking robustness and can improve the watermarking safety.

[1]  Oscar C. Au,et al.  Novel blind multiple watermarking technique for images , 2003, IEEE Trans. Circuits Syst. Video Technol..

[2]  Chandan Singh,et al.  A high capacity image adaptive watermarking scheme with radial harmonic Fourier moments , 2013, Digit. Signal Process..

[3]  Jeng-Shyang Pan,et al.  Geometrically invariant image watermarking using Polar Harmonic Transforms , 2012, Inf. Sci..

[4]  Ahmed H. Tewfik,et al.  Image watermarking by moment invariants , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[5]  Demetri Psaltis,et al.  Recognitive Aspects of Moment Invariants , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  M. Kutter Watermaking resisting to translation, rotation, and scaling , 1998 .

[7]  Michael G. Strintzis,et al.  Robust image watermarking based on generalized Radon transformations , 2003, IEEE Trans. Circuits Syst. Video Technol..

[8]  Chandan Singh,et al.  Rotation invariant moments and transforms for geometrically invariant image watermarking , 2013, J. Electronic Imaging.

[9]  Xudong Jiang,et al.  Two-Dimensional Polar Harmonic Transforms for Invariant Image Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  M. Teague Image analysis via the general theory of moments , 1980 .

[11]  Mandyam D. Srinath,et al.  Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments , 2002, Pattern Recognit..

[12]  Min Liu,et al.  The RST invariant digital image watermarking using Radon transforms and complex moments , 2010, Digit. Signal Process..

[13]  Y. Sheng,et al.  Orthogonal Fourier–Mellin moments for invariant pattern recognition , 1994 .

[14]  V. Namias The Fractional Order Fourier Transform and its Application to Quantum Mechanics , 1980 .

[15]  Dimitris E. Koulouriotis,et al.  Performance evaluation of moment-based watermarking methods: A review , 2012, J. Syst. Softw..

[16]  Andrew Beng Jin Teoh,et al.  An efficient method for human face recognition using wavelet transform and Zernike moments , 2004, Proceedings. International Conference on Computer Graphics, Imaging and Visualization, 2004. CGIV 2004..

[17]  Adnan M. Alattar,et al.  > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < Reversible Watermark Using the Difference Expansion of A Generalized Integer Transform , 2022 .

[18]  Z. Zalevsky,et al.  The Fractional Fourier Transform: with Applications in Optics and Signal Processing , 2001 .

[19]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[20]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Michalis A. Savelonas,et al.  Noise-resistant watermarking in the fractional Fourier domain utilizing moment-based image representation , 2010, Signal Process..

[22]  Chandan Singh,et al.  Image adaptive and high-capacity watermarking system using accurate Zernike moments , 2014, IET Image Process..

[23]  Salvatore Tabbone,et al.  Generic polar harmonic transforms for invariant image description , 2011, 2011 18th IEEE International Conference on Image Processing.

[24]  Walter J. Riker A Review of J , 2010 .

[25]  Chun-Shien Lu,et al.  Mean-quantization-based fragile watermarking for image authentication , 2001 .

[26]  Zhen Ji,et al.  Geometric invariant blind image watermarking by invariant Tchebichef moments. , 2007, Optics express.

[27]  Efstratios D. Tsougenis and George A. Papakostas Should We Consider Adaptivity in Moment-based Image Watermarking? , 2014 .

[28]  P.N.T. Wells,et al.  Handbook of Image and Video Processing , 2001 .

[29]  Jan Flusser,et al.  Pattern recognition by affine moment invariants , 1993, Pattern Recognit..

[30]  Sim Heng Ong,et al.  Image Analysis by Tchebichef Moments , 2001, IEEE Trans. Image Process..

[31]  Roland T. Chin,et al.  On Image Analysis by the Methods of Moments , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  R. Mukundan,et al.  Moment Functions in Image Analysis: Theory and Applications , 1998 .

[33]  Xuelong Li,et al.  A local Tchebichef moments-based robust image watermarking , 2009, Signal Process..

[34]  Yongqing Xin,et al.  Geometrically robust image watermarking via pseudo-Zernike moments , 2004, Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513).

[35]  Martin Kutter,et al.  Watermarking resistance to translation, rotation, and scaling , 1999, Other Conferences.

[36]  J Duvernoy,et al.  Circular-Fourier-radial-Mellin transform descriptors for pattern recognition. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[37]  Hossein Sarafraz Yazdi Fractional Fourier transform and its optical applications , 2012 .

[38]  E. D. Tsougenis,et al.  Towards adaptivity of image watermarking in polar harmonic transforms domain , 2013 .

[39]  Thierry Pun,et al.  Rotation, scale and translation invariant spread spectrum digital image watermarking , 1998, Signal Process..

[40]  Heung-Kyu Lee,et al.  Invariant image watermark using Zernike moments , 2003, IEEE Trans. Circuits Syst. Video Technol..

[41]  Ioannis Pitas,et al.  Digital watermarking in the fractional Fourier transformation domain , 2001, J. Netw. Comput. Appl..

[42]  Demetri Psaltis,et al.  Image Normalization by Complex Moments , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Jerry D. Gibson,et al.  Handbook of Image and Video Processing , 2000 .