Parallelization of a bound-consistency enforcing procedure and its application in solving nonlinear systems

Abstract This paper considers incorporating a bound-consistency enforcing procedure to an interval branch-and-prune method. A heuristic to decide, when to use the developed operator, is proposed. As enforcing the bound-consistency is much more time consuming than performing other narrowing tools, we parallelize the procedure, using Intel TBB. A few parallelization versions are considered. Also, this is a good opportunity to make a case-study of performance of various lock instances, implemented in the TBB package. Numerical results for typical benchmark problems are presented and analyzed. A specific lock version, proper for the application, is proposed. Performance on two architectures is considered: Intel Xeon and Intel Xeon Phi (MIC).

[1]  Performance inversion of interval Newton narrowing operators , 2009 .

[2]  Frédéric Goualard,et al.  A Reinforcement Learning Approach to Interval Constraint Propagation , 2008, Constraints.

[3]  Bartlomiej Jacek Kubica Using Quadratic Approximations in an Interval Method for Solving Underdetermined and Well-Determined Nonlinear Systems , 2013, PPAM.

[4]  Bartlomiej Jacek Kubica,et al.  Using the Second-Order Information in Pareto-set Computations of a Multi-criteria Problem , 2010, PARA.

[5]  Stefan Ratschan,et al.  Effective topological degree computation based on interval arithmetic , 2012, Math. Comput..

[6]  Bartlomiej Jacek Kubica Excluding Regions Using Sobol Sequences in an Interval Branch-and-Prune Method for Nonlinear Systems , 2013, Reliab. Comput..

[7]  Guy E. Blelloch,et al.  Room synchronizations , 2001, SPAA '01.

[8]  Frédéric Goualard On considering an interval constraint solving algorithm as a free-steering nonlinear Gauss-Seidel procedure , 2005, SAC '05.

[9]  Stefan Herbort,et al.  Improving the Efficiency of a Nonlinear-System-Solver Using a Componentwise Newton Method , 1997 .

[10]  Michael Zimmer,et al.  Using C-XSC for High Performance Verified Computing , 2010, PARA.

[11]  Daisuke Ishii,et al.  Interval-based projection method for under-constrained numerical systems , 2012, Constraints.

[12]  Pawel Gepner,et al.  Adaptation of MPDATA Heterogeneous Stencil Computation to Intel Xeon Phi Coprocessor , 2015, Sci. Program..

[13]  Jon G. Rokne,et al.  Experiments using interval analysis for solving a circuit design problem , 1993, J. Glob. Optim..

[14]  W. Rheinboldt Computation of Critical Boundaries on Equilibrium Manifolds , 1982 .

[15]  Pascal Van Hentenryck,et al.  A Constraint Satisfaction Approach to a Circuit Design Problem , 1996, J. Glob. Optim..

[16]  Bartlomiej Jacek Kubica,et al.  Tuning the Multithreaded Interval Method for Solving Underdetermined Systems of Nonlinear Equations , 2011, PPAM.

[17]  Peter Franek,et al.  Robust Satisfiability of Systems of Equations , 2014, SODA.

[18]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[19]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[20]  Hélène Collavizza,et al.  Comparing Partial Consistencies , 1998, SCAN.

[21]  Arnold Neumaier,et al.  Existence Verification for Singular Zeros of Complex Nonlinear Systems , 2000, SIAM J. Numer. Anal..

[22]  B. J. Kubica Shared-Memory Parallelization of an Interval Equations Systems Solver - Comparison of Tools , 2009 .

[23]  Marco Schnurr On the Proofs of Some Statements Concerning the Theorems of Kantorovich, Moore, and Miranda , 2005, Reliab. Comput..

[24]  Andreas Frommer,et al.  On the existence theorems of Kantorovich, Miranda and Borsuk. , 2004 .

[25]  K. Meyn Solution of underdetermined nonlinear equations by stationary iteration methods , 1983 .

[26]  Peter Franek,et al.  Cohomotopy groups capture robust properties of zero sets , 2015, ArXiv.

[27]  Daisuke Ishii,et al.  Interval-based projection method for under-constrained numerical csps , 2012 .

[28]  Bartlomiej Jacek Kubica Interval Methods for Solving Underdetermined Nonlinear Systems , 2011, Reliab. Comput..

[29]  K. Baker,et al.  Standardized notation in interval analysis , 2010 .

[30]  Bartlomiej Jacek Kubica Presentation of a highly tuned multithreaded interval solver for underdetermined and well-determined nonlinear systems , 2015, Numerical Algorithms.

[31]  A. Frommera,et al.  Proving the existence of zeros using the topological degree and interval arithmetic , 2006 .

[32]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .