Parametric Analysis and Impulsive Synchronization of Fractional-Order Newton-Leipnik Systems

In this paper, the influences of parameters on the dynamics of a fractional-order Newton-Leipnik system were numerically studied. Impulsive synchronization of two fractional-order Newton-Leipnik systems was also investigated. The ranges of the parameters used in this study were relatively broad. The system displayed comprehensive dynamic behaviours, such as fixed points, periodic motion (including periodic-3 motion), chaotic motion, and transient chaos. A period-doubling route to chaos in this study was also found. Sufficient conditions on synchronization of the two systems are provided and illustrative example is given.

[1]  Changpin Li,et al.  On chaos synchronization of fractional differential equations , 2007 .

[2]  Guanrong Chen,et al.  Nonlinear feedback-controlled generalized synchronization of spatial chaos , 2004 .

[3]  Ahmed S. Elwakil,et al.  Fractional-order Wien-bridge oscillator , 2001 .

[4]  H.-K. Chen CHAOS AND CHAOS SYNCHRONIZATION OF A SYMMETRIC GYRO WITH LINEAR-PLUS-CUBIC DAMPING , 2002 .

[5]  Hsien-Keng Chen,et al.  Anti-control of chaos in rigid body motion , 2004 .

[6]  Lixin Tian,et al.  Bifurcation analysis and linear control of the Newton–Leipnik system , 2006 .

[7]  Chun-Mei Yang,et al.  Impulsive synchronization of Lorenz systems , 1997 .

[8]  Zheng-Ming Ge,et al.  Stability and Chaotic Motions of a Symmetric Heavy Gyroscope. , 1996 .

[9]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[10]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[11]  H.-K. Chen,et al.  Synchronization of chaotic symmetric gyros by one-way coupling conditions , 2003 .

[12]  X. Shan,et al.  A linear feedback synchronization theorem for a class of chaotic systems , 2002 .

[13]  Julien Clinton Sprott,et al.  Chaos in fractional-order autonomous nonlinear systems , 2003 .

[14]  S. Momani,et al.  Numerical comparison of methods for solving linear differential equations of fractional order , 2007 .

[15]  Rong Zhang,et al.  Impulsive synchronization of Rössler systems with parameter driven by an external signal , 2007 .

[16]  Z. Ge,et al.  THE REGULAR AND CHAOTIC MOTIONS OF A SYMMETRIC HEAVY GYROSCOPE WITH HARMONIC EXCITATION , 1996 .

[17]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[18]  WU Ran-chao Impulsive Control and Synchronization of a New Chaotic System , 2009 .

[19]  Yuan Kang,et al.  Chaos in the Newton–Leipnik system with fractional order , 2008 .

[20]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[21]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[22]  Z. Ge,et al.  Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor , 2007 .

[23]  J. H. Chen,et al.  Parametric analysis of a fractional-order Newton-Leipnik system , 2008 .

[24]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[25]  Louis M. Pecora,et al.  Synchronization in Chaotic Systems, Concepts and Applications , 2006 .

[26]  L. Tian,et al.  Tracing control of chaos for the coupled dynamos dynamical system , 2004 .

[27]  Hendrik Richter Controlling chaotic systems with multiple strange attractors , 2002 .

[28]  I. Podlubny Fractional differential equations , 1998 .

[29]  Luo Runzi,et al.  Impulsive control and synchronization of a new chaotic system , 2008 .

[30]  Jinhu Lu,et al.  Chaos synchronization between linearly coupled chaotic systems , 2002 .

[31]  Changpin Li,et al.  The synchronization of three fractional differential systems , 2007 .

[32]  Z. Ge,et al.  Chaos in a generalized van der Pol system and in its fractional order system , 2007 .

[33]  Hsien-Keng Chen,et al.  Chaos in a new system with fractional order , 2007 .

[34]  Zheng-Ming Ge,et al.  Chaos in a modified van der Pol system and in its fractional order systems , 2007 .

[35]  Zhang Suo-chun,et al.  Controlling uncertain Lü system using backstepping design , 2003 .

[36]  Zheng-Ming Ge,et al.  Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems , 2007 .

[37]  R. Leipnik,et al.  Double strange attractors in rigid body motion with linear feedback control , 1981 .

[38]  X. Tong,et al.  Chaotic Motion of a Symmetric Gyro Subjected to a Harmonic Base Excitation , 2001 .

[39]  Parlitz,et al.  Driving and synchronizing by chaotic impulses. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[41]  P. Arena,et al.  Chaotic behavior in noninteger-order cellular neural networks , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  Guy Jumarie,et al.  Lagrangian mechanics of fractional order, Hamilton–Jacobi fractional PDE and Taylor’s series of nondifferentiable functions , 2007 .

[43]  S. Momani,et al.  Application of Variational Iteration Method to Nonlinear Differential Equations of Fractional Order , 2006 .