A bandwidth theorem for graph transversals

Given a collection $\mathcal{G}=(G_1,\dots, G_h)$ of graphs on the same vertex set $V$ of size $n$, an $h$-edge graph $H$ on the vertex set $V$ is a $\mathcal{G}$-transversal if there exists a bijection $\lambda : E(H) \rightarrow [h]$ such that $e\in E(G_{\lambda(e)})$ for each $e\in E(H)$. The conditions on the minimum degree $\delta(\mathcal{G})=\min_{i\in[h]}\{ \delta(G_i)\}$ for finding a spanning $\mathcal{G}$-transversal isomorphic to a graph $H$ have been actively studied when $H$ is a Hamilton cycle, an $F$-factor, a spanning tree with maximum degree $o(n/\log n)$ and a power of a Hamilton cycle, etc. In this paper, we determined the asymptotically tight threshold on $\delta(\mathcal{G})$ for finding a $\mathcal{G}$-transversal isomorphic to $H$ when $H$ is a general $n$-vertex graph with bounded maximum degree and $o(n)$-bandwidth. This provides a transversal generalization of the celebrated Bandwidth theorem by B\"ottcher, Schacht and Taraz.

[1]  Alp Muyesser,et al.  A general approach to transversal versions of Dirac-type theorems , 2022, European Conference on Combinatorics, Graph Theory and Applications.

[2]  R. Montgomery,et al.  Transversal factors and spanning trees , 2021, Advances in Combinatorics.

[3]  Jie Han,et al.  Rainbow spanning structures in graph and hypergraph systems , 2021, 2105.10219.

[4]  A. Pokrovskiy Rota's Basis Conjecture holds asymptotically , 2020, 2008.06045.

[5]  Felix Joos,et al.  On a rainbow version of Dirac's theorem , 2019, Bulletin of the London Mathematical Society.

[6]  G. Wang,et al.  Rainbow Pancyclicity in Graph Systems , 2019, Electron. J. Comb..

[7]  Stefan Ehard,et al.  A rainbow blow-up lemma for almost optimally bounded edge-colourings , 2019, Forum of Mathematics, Sigma.

[8]  R. Aharoni,et al.  A rainbow version of Mantel's Theorem , 2018, Advances in Combinatorics.

[9]  Benny Sudakov,et al.  Anticoncentration for subgraph statistics , 2018, J. Lond. Math. Soc..

[10]  Stefan Glock,et al.  A rainbow blow‐up lemma , 2018, Random Struct. Algorithms.

[11]  D. Osthus,et al.  A bandwidth theorem for approximate decompositions , 2017, Proceedings of the London Mathematical Society.

[12]  Benny Sudakov,et al.  Long directed rainbow cycles and rainbow spanning trees , 2017, Eur. J. Comb..

[13]  Theodore Molla,et al.  Long rainbow cycles and Hamiltonian cycles using many colors in properly edge-colored complete graphs , 2017, Eur. J. Comb..

[14]  Hong Liu,et al.  Rainbow spanning trees in properly coloured complete graphs , 2017, Discret. Appl. Math..

[15]  Benny Sudakov,et al.  Linearly many rainbow trees in properly edge-coloured complete graphs , 2017, J. Comb. Theory, Ser. B.

[16]  Alexey Pokrovskiy,et al.  An approximate version of a conjecture of Aharoni and Berger , 2016, Advances in Mathematics.

[17]  Noga Alon,et al.  Random subgraphs of properly edge-coloured complete graphs and long rainbow cycles , 2016, Israel Journal of Mathematics.

[18]  Ron Aharoni,et al.  A Rainbow r-Partite Version of the Erdős–Ko–Rado Theorem , 2016, Combinatorics, Probability and Computing.

[19]  D. Kuhn,et al.  A blow-up lemma for approximate decompositions , 2016, Transactions of the American Mathematical Society.

[20]  Jan Volec,et al.  Properly colored and rainbow copies of graphs with few cherries , 2015, Electron. Notes Discret. Math..

[21]  Yoshiharu Kohayakawa,et al.  Properly coloured copies and rainbow copies of large graphs with small maximum degree , 2010, Random Struct. Algorithms.

[22]  János Pach,et al.  Points surrounding the origin , 2008, Comb..

[23]  Peter W. Shor,et al.  A lower bound for the length of a partial transversal in a Latin square , 2008, J. Comb. Theory, Ser. A.

[24]  Gil Kalai,et al.  A topological colorful Helly theorem , 2005 .

[25]  Vojtech Rödl,et al.  Perfect Matchings in ε-Regular Graphs and the Blow-Up Lemma , 1999, Comb..

[26]  Endre Szemerédi,et al.  Proof of the Seymour conjecture for large graphs , 1998 .

[27]  Vojtech Rödl,et al.  A Fast Approximation Algorithm for Computing the Frequencies of Subgraphs in a Given Graph , 1995, SIAM J. Comput..

[28]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[29]  Gian-Carlo Rota,et al.  On the relations of various conjectures on Latin squares and straightening coefficients , 1994, Discret. Math..

[30]  Sinisa T. Vrecica,et al.  The Colored Tverberg's Problem and Complexes of Injective Functions , 1992, J. Comb. Theory, Ser. A.

[31]  P. Lax Proof of a conjecture of P. Erdös on the derivative of a polynomial , 1944 .

[32]  M. Schacht,et al.  Proof of the bandwidth conjecture of Bollobás and Komlós , 2009 .

[33]  J A N O S K O M L ´ O S,et al.  Spanning Trees in Dense Graphs , 2001 .

[34]  Imre Bárány,et al.  A generalization of carathéodory's theorem , 1982, Discret. Math..

[35]  G. Dirac Some Theorems on Abstract Graphs , 1952 .