Restarted block Lanczos bidiagonalization methods

The problem of computing a few of the largest or smallest singular values and associated singular vectors of a large matrix arises in many applications. This paper describes restarted block Lanczos bidiagonalization methods based on augmentation of Ritz vectors or harmonic Ritz vectors by block Krylov subspaces.

[1]  Zhongxiao Jia,et al.  An Implicitly Restarted Refined Bidiagonalization Lanczos Method for Computing a Partial Singular Value Decomposition , 2003, SIAM J. Matrix Anal. Appl..

[2]  J. H. Wilkinson,et al.  Reliable Numerical Computation. , 1992 .

[3]  R. Morgan Restarted block-GMRES with deflation of eigenvalues , 2005 .

[4]  James G. Nagy Fast algorithms for the regularization of banded Toeplitz least squares problems , 1994, Optics & Photonics.

[5]  Efstratios Gallopoulos,et al.  Computing smallest singular triplets with implicitly restarted Lanczos bidiagonalization , 2004, Applied Numerical Mathematics.

[6]  Franklin T. Luk,et al.  A Block Lanczos Method for Computing the Singular Values and Corresponding Singular Vectors of a Matrix , 1981, TOMS.

[7]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[8]  Gene H. Golub,et al.  Matrix computations , 1983 .

[9]  Kesheng Wu,et al.  Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..

[10]  Richard W. Vuduc,et al.  Sparsity: Optimization Framework for Sparse Matrix Kernels , 2004, Int. J. High Perform. Comput. Appl..

[11]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[12]  Harry A. G. Wijshoff Implementing sparse BLAS primitives on concurrent/vector processors: a case study , 1993 .

[13]  Lothar Reichel,et al.  Augmented Implicitly Restarted Lanczos Bidiagonalization Methods , 2005, SIAM J. Sci. Comput..

[14]  Michiel E. Hochstenbach,et al.  A Jacobi-Davidson Type SVD Method , 2001, SIAM J. Sci. Comput..

[15]  Åke Björck,et al.  An implicit shift bidiagonalization algorithm for ill-posed systems , 1994 .

[16]  Lothar Reichel,et al.  IRBL: An Implicitly Restarted Block-Lanczos Method for Large-Scale Hermitian Eigenproblems , 2002, SIAM J. Sci. Comput..

[17]  R. Morgan Computing Interior Eigenvalues of Large Matrices , 1991 .

[18]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[19]  Richard B. Lehoucq,et al.  Implicitly Restarted Arnoldi Methods and Subspace Iteration , 2001, SIAM J. Matrix Anal. Appl..

[20]  Michiel E. Hochstenbach,et al.  Harmonic and Refined Extraction Methods for the Singular Value Problem, with Applications in Least Squares Problems , 2004 .

[21]  Hongyuan Zha,et al.  Low-Rank Matrix Approximation Using the Lanczos Bidiagonalization Process with Applications , 1999, SIAM J. Sci. Comput..

[22]  Susan T. Dumais,et al.  Using Linear Algebra for Intelligent Information Retrieval , 1995, SIAM Rev..

[23]  Franklin T. Luk,et al.  Rank-revealing decomposition of symmetric Toeplitz matrices , 1995, Optics & Photonics.

[24]  Henk A. van der Vorst,et al.  Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..