High-resolution land topography

After a description of the background, methods of production and some scientific uses of high-resolution land topography, we present the current status and the prospect of radar interferometry, regarded as one of the best techniques for obtaining the most global and the most accurate topographic maps. After introducing briefly the theoretical aspects of radar interferometry – principles, limits of operation and various capabilities –, we will focus on the topographic applications that resulted in an almost global topographic map of the earth: the SRTM map. After introducing the Interferometric Cartwheel system, we will build on its expected performances to discuss the scientific prospects of refining a global topographic map to sub-metric accuracy. We also show how other fields of sciences such as hydrology may benefit from the products generated by interferometric radar systems.

[1]  C. Latry,et al.  Super resolution: quincunx sampling and fusion processing , 2003, IGARSS.

[2]  R. Lacassin,et al.  Large river offsets and Plio‐Quaternary dextral slip rate on the Red River fault (Yunnan, China) , 2001 .

[3]  J. Zyl,et al.  Introduction to the Physics and Techniques of Remote Sensing , 2006 .

[4]  Claudio Prati,et al.  Improving slant-range resolution with multiple SAR surveys , 1993 .

[5]  A. Laurence Gray,et al.  Repeat-pass interferometry with airborne synthetic aperture radar , 1993, IEEE Trans. Geosci. Remote. Sens..

[6]  Marian Werner,et al.  Shuttle Radar Topography Mission (SRTM) Mission Overview , 2001 .

[7]  Didier Massonnet,et al.  Capabilities and limitations of the interferometric cartwheel , 2001, IEEE Trans. Geosci. Remote. Sens..

[8]  J. Avouac,et al.  Kinematics of the Asal Rift (Djibouti) Determined from the Deformation of Fieale Volcano , 1994, Science.

[9]  Roman E. Glazman,et al.  Statistical problems of wind-generated gravity waves arising in microwave remote sensing of surface winds , 1991, IEEE Trans. Geosci. Remote. Sens..

[10]  Richard M. Goldstein,et al.  Atmospheric limitations to repeat‐track radar interferometry , 1995 .

[11]  Diane L. Evans,et al.  Overview of results of Spaceborne Imaging Radar-C, X-Band Synthetic Aperture Radar (SIR-C/X-SAR) , 1995, IEEE Trans. Geosci. Remote. Sens..

[12]  K. Feigl,et al.  The displacement field of the Landers earthquake mapped by radar interferometry , 1993, Nature.

[13]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[14]  Dennis C. Ghiglia,et al.  Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software , 1998 .

[15]  Fabio Rocca,et al.  Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[16]  Lars M. H. Ulander,et al.  C-band repeat-pass interferometric SAR observations of the forest , 1997, IEEE Trans. Geosci. Remote. Sens..

[17]  K. Feigl,et al.  Radar interferometric mapping of deformation in the year after the Landers earthquake , 1994, Nature.

[18]  T. Farr,et al.  Shuttle radar topography mission produces a wealth of data , 2000 .

[19]  K. Feigl,et al.  Discrimination of geophysical phenomena in satellite radar interferograms , 1995 .

[20]  R. Goldstein,et al.  Topographic mapping from interferometric synthetic aperture radar observations , 1986 .

[21]  Charles Elachi Radar Images of the Earth from Space , 1982 .

[22]  L. C. Graham,et al.  Synthetic interferometer radar for topographic mapping , 1974 .

[23]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[24]  Richard Weindruch,et al.  Caloric restriction and aging. , 1996, Scientific American.

[25]  T. Avery,et al.  Fundamentals of Remote Sensing and Airphoto Interpretation , 1992 .