An improved meshless Shepard and least squares method possessing the delta property and requiring no singular weight function

The meshless Shepard and least squares (MSLS) method and the meshless Shepard method are partition of unity based meshless interpolations which eliminate the problems by other meshless methods such as the difficulty in direct imposition of the essential boundary conditions. However, singular weight functions have to be used in both methods to enforce the approximation interpolatory, which leads to the loss of smoothness in approximation and locally oscillatory results. In this paper, an improved MSLS interpolation is developed by using dually defined nodal supports such that no singular weight function is required. The proposed interpolation satisfies the delta property at boundary nodes and the compatibility condition throughout the domain, and is capable of exactly reproducing the basis function. The computational cost of the present interpolation is much lower than the moving least-squares approximation which is probably the most widely used meshless interpolation at present.

[1]  S. Atluri,et al.  Meshless Local Petrov-Galerkin (MLPG) approaches for solving 3D Problems in elasto-statics , 2004 .

[2]  松澤 照男,et al.  Element-Free Galerkin Method を用いた粘性流れの並列計算に関する検討 , 1999 .

[3]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[4]  S. Bordas,et al.  Accurate fracture modelling using meshless methods, the visibility criterion and level sets: Formulation and 2D modelling , 2011 .

[5]  Sunil Saigal,et al.  AN IMPROVED ELEMENT FREE GALERKIN FORMULATION , 1997 .

[6]  H. Matthies,et al.  Classification and Overview of Meshfree Methods , 2004 .

[7]  S. De,et al.  An octree partition of unity method (OctPUM) with enrichments for multiscale modeling of heterogeneous media , 2008 .

[8]  YuanTong Gu,et al.  Assessment and applications of point interpolation methods for computational mechanics , 2004 .

[9]  K. Liew,et al.  Analyzing the 2D fracture problems via the enriched boundary element-free method , 2007 .

[10]  G. Y. Li,et al.  An Analysis for the Elasto-Plastic Fracture Problem by the Meshless Local Petrov-Galerkin Method , 2008 .

[11]  Hehua Zhu,et al.  A PU-based meshless Shepard interpolation method satisfying delta property , 2010 .

[12]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[13]  T. Rabczuk,et al.  A Meshfree Method based on the Local Partition of Unity for Cohesive Cracks , 2007 .

[14]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[15]  T. Belytschko,et al.  Analysis of thin shells by the Element-Free Galerkin method , 1996 .

[16]  Ted Belytschko,et al.  Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition , 2002 .

[17]  Michael Griebel,et al.  A Particle-Partition of Unity Method for the Solution of Elliptic, Parabolic, and Hyperbolic PDEs , 2000, SIAM J. Sci. Comput..

[18]  Marc Duflot,et al.  Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..

[19]  Charles E. Augarde,et al.  Aspects of the use of orthogonal basis functions in the element‐free Galerkin method , 2009 .

[20]  Timon Rabczuk,et al.  On the numerical stability and mass‐lumping schemes for explicit enriched meshfree methods , 2012 .

[21]  Phill-Seung Lee,et al.  Phantom-node method for shell models with arbitrary cracks , 2012 .

[22]  Hyun Gyu Kim,et al.  A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods , 1999 .

[23]  H. Zhu,et al.  A Local Meshless Shepard and Least Square Interpolation Method Based on Local Weak Form , 2008 .

[24]  T. Belytschko,et al.  A three dimensional large deformation meshfree method for arbitrary evolving cracks , 2007 .

[25]  T. Rabczuk,et al.  On three-dimensional modelling of crack growth using partition of unity methods , 2010 .

[26]  Victor M. Calo,et al.  The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers , 2012 .

[27]  村上 敬宜,et al.  Stress intensity factors handbook , 1987 .

[28]  Wing Kam Liu,et al.  Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures , 1996 .

[29]  Ping Lin,et al.  Numerical analysis of Biot's consolidation process by radial point interpolation method , 2002 .

[30]  D. Rooke,et al.  The dual boundary element method: Effective implementation for crack problems , 1992 .

[31]  Michael Griebel,et al.  A Particle-Partition of Unity Method-Part II: Efficient Cover Construction and Reliable Integration , 2001, SIAM J. Sci. Comput..

[32]  Charles E. Augarde,et al.  Modelling Elasto-Plasticity Using the Hybrid MLPG Method , 2010 .

[33]  C. T. Wu,et al.  A generalized approximation for the meshfree analysis of solids , 2011 .

[34]  K. M. Liew,et al.  Analyzing 2D fracture problems with the improved element-free Galerkin method , 2008 .

[35]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[36]  G. Touzot,et al.  Explicit form and efficient computation of MLS shape functions and their derivatives , 2000 .

[37]  T. Rabczuk,et al.  Discontinuous modelling of shear bands using adaptive meshfree methods , 2008 .

[38]  Charles E. Augarde,et al.  Fracture modeling using meshless methods and level sets in 3D: Framework and modeling , 2012 .

[39]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[40]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[41]  Jiun-Shyan Chen,et al.  Filters, reproducing kernel, and adaptive meshfree method , 2003 .

[42]  Weimin Han,et al.  Reproducing kernel element method. Part I: Theoretical formulation , 2004 .

[43]  T. Belytschko,et al.  Stable particle methods based on Lagrangian kernels , 2004 .

[44]  Ted Belytschko,et al.  Immersed particle method for fluid–structure interaction , 2009 .

[45]  X. Zhuang,et al.  On error control in the element-free Galerkin method , 2012 .

[46]  T. Belytschko,et al.  Consistent pseudo-derivatives in meshless methods , 1997 .

[47]  Michael Griebel,et al.  A Particle-Partition of Unity Method-Part III: A Multilevel Solver , 2002, SIAM J. Sci. Comput..