Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review

In this paper, we review the use of satellite-based remote sensing in combination with in situ data to inform Earth surface modelling. This involves verification and optimization methods that can handle both random and systematic errors and result in effective model improvement for both surface monitoring and prediction applications. The reasons for diverse remote sensing data and products include (i) their complementary areal and temporal coverage, (ii) their diverse and covariant information content, and (iii) their ability to complement in situ observations, which are often sparse and only locally representative. To improve our understanding of the complex behavior of the Earth system at the surface and sub-surface, we need large volumes of data from high-resolution modelling and remote sensing, since the Earth surface exhibits a high degree of heterogeneity and discontinuities in space and time. The spatial and temporal variability of the biosphere, hydrosphere, cryosphere and anthroposphere calls for an increased use of Earth observation (EO) data attaining volumes previously considered prohibitive. We review data availability and discuss recent examples where satellite remote sensing is used to infer observable surface quantities directly or indirectly, with particular emphasis on key parameters necessary for weather and climate prediction. Coordinated high-resolution remote-sensing and modelling/assimilation capabilities for the Earth surface are required to support an international application-focused effort.

Yann Kerr | Rolf Reichle | Andy Brown | Florian Pappenberger | Sujay V. Kumar | Matthias Drusch | Isabel F. Trigo | Florence Rabier | Kristian Mogensen | Pierre Gentine | Roberto Buizza | Steffen Tietsche | Clément Albergel | Patricia de Rosnay | Remko Uijlenhoet | Nils P. Wedi | Sonia I. Seneviratne | Susanne Mecklenburg | Xubin Zeng | Gianpaolo Balsamo | Paul A. Dirmeyer | Joaquín Muñoz Sabater | Emanuel Dutra | Frédéric Chevallier | Jean-François Mahfouf | Nicolas Bousserez | Souhail Boussetta | Hannah Cloke | Cristina Lupu | Carlo Buontempo | Benjamin C. Ruston | Anna Agustì-Parareda | R. Iestyn Woolway | Jean Bidlot | Margarita Choulga | Meghan F. Cronin | Mohamed Dahoui | Joe McNorton | Rene Orth | Gabriele Arduini | Anton Beljaars | Michael B. Ek | Helene Hewitt | Sarah P. E. Keeley | Irina Sandu | J. M. Sabater | Sujay V. Kumar | S. Seneviratne | P. Dirmeyer | Y. Kerr | R. Buizza | M. Ek | F. Pappenberger | H. Cloke | X. Zeng | J. Bidlot | P. de Rosnay | C. Buontempo | R. Uijlenhoet | R. Reichle | M. Drusch | C. Albergel | G. Balsamo | J. Muñoz‐Sabater | P. Rosnay | S. Mecklenburg | J. Mahfouf | E. Dutra | N. Wedi | Anna Agustì-Parareda | G. Arduini | A. Beljaars | E. Blyth | N. Bousserez | S. Boussetta | Andy Brown | F. Chevallier | M. Choulga | M. Cronin | M. Dahoui | P. Gentine | H. Hewitt | S. Keeley | C. Lupu | J. McNorton | K. Mogensen | R. Orth | F. Rabier | B. Ruston | I. Sandu | S. Tietsche | I. Trigo | R. Woolway | A. Agustí-Panareda | Patricia de Rosnay

[1]  Paul D. Bates,et al.  Technology: Fight floods on a global scale , 2014, Nature.

[2]  A. Al Bitar,et al.  An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa , 2018, Biogeosciences.

[3]  Qing Liu,et al.  Improved Hydrological Simulation Using SMAP Data: Relative Impacts of Model Calibration and Data Assimilation. , 2018, Journal of hydrometeorology.

[4]  Alan K. Betts,et al.  The Amazonian Boundary Layer and Mesoscale Circulations , 2013 .

[5]  G. Lannoy,et al.  Global Calibration of the GEOS-5 L-Band Microwave Radiative Transfer Model over Nonfrozen Land Using SMOS Observations , 2013 .

[6]  S. Seneviratne,et al.  Global intercomparison of 12 land surface heat flux estimates , 2011 .

[7]  N. Wedi,et al.  Increasing horizontal resolution in numerical weather prediction and climate simulations: illusion or panacea? , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Axel Schweiger,et al.  Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice , 2017 .

[9]  Dara Entekhabi,et al.  Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations , 1994, IEEE Trans. Geosci. Remote. Sens..

[10]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[11]  Bin Zhao,et al.  The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). , 2017, Journal of climate.

[12]  Ahmad Al Bitar,et al.  Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region. , 2018 .

[13]  W. Dorigo,et al.  A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset , 2016 .

[14]  Kazhmurat M. Akhmedenov,et al.  Karst and Pseudokarst of the West Kazakhstan (Republic of Kazakhstan) , 2014 .

[15]  P. M. Lang,et al.  CO 2 , CO, and CH 4 measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts , 2014 .

[16]  Bryan N. Lawrence,et al.  High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign , 2014 .

[17]  T. Hengl,et al.  Mapping the global depth to bedrock for land surface modelling , 2017 .

[18]  Lijun Yu,et al.  Importance of vegetation classes in modeling CH4 emissions from boreal and subarctic wetlands in Finland. , 2016, The Science of the total environment.

[19]  S. J. Birks,et al.  Terrestrial water fluxes dominated by transpiration , 2013, Nature.

[20]  F. Pappenberger,et al.  Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling , 2017 .

[21]  Kelly Elder,et al.  An Improved Snow Scheme for the ECMWF Land Surface Model: Description and Offline Validation , 2010 .

[22]  Maosheng Zhao,et al.  Development of a global evapotranspiration algorithm based on MODIS and global meteorology data , 2007 .

[23]  Theodore A. Scambos,et al.  An image-enhanced DEM of the Greenland ice sheet , 2002, Annals of Glaciology.

[24]  James S. Famiglietti,et al.  Toward hyper‐resolution land‐surface modeling: The effects of fine‐scale topography and soil texture on CLM4.0 simulations over the Southwestern U.S. , 2015 .

[25]  Pedro Viterbo,et al.  Impact on ECMWF forecasts of changes to the albedo of the boreal forests in the presence of snow , 1999 .

[26]  Peter A. Troch,et al.  Implementing and Evaluating Variable Soil Thickness in the Community Land Model, Version 4.5 (CLM4.5) , 2016 .

[27]  Simon T. K. Lang,et al.  Stochastic representations of model uncertainties at ECMWF: state of the art and future vision , 2017 .

[28]  C. Frankenberg,et al.  Prospects for Chlorophyll Fluorescence Remote Sensing from the Orbiting Carbon Observatory-2 , 2014 .

[29]  Veronika Eyring,et al.  Analysis of Present Day and Future OH and Methane Lifetime in the ACCMIP Simulations , 2012 .

[30]  Pedro M. A. Miranda,et al.  Snow cover sensitivity to horizontal resolution, parameterizations, and atmospheric forcing in a land surface model , 2011 .

[31]  Gordon B. Bonan,et al.  Sensitivity of a GCM simulation to inclusion of inland water surfaces , 1995 .

[32]  Vincent Guidard,et al.  Driftsondes: Providing In Situ Long-Duration Dropsonde Observations over Remote Regions , 2013 .

[33]  J. McDonnell,et al.  Global separation of plant transpiration from groundwater and streamflow , 2015, Nature.

[34]  Matthew F. McCabe,et al.  The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms , 2015 .

[35]  Wanqiu Wang,et al.  Seasonal Prediction of Arctic Sea Ice Extent from a Coupled Dynamical Forecast System , 2013 .

[36]  T. Oke,et al.  Local Climate Zones for Urban Temperature Studies , 2012 .

[37]  G. Blöschl,et al.  Debates—Perspectives on socio‐hydrology: Capturing feedbacks between physical and social processes , 2015 .

[38]  Peter A. E. M. Janssen,et al.  Progress in Operational Wave Forecasting , 2018 .

[39]  P. Salamon,et al.  Developing a global operational seasonal hydro-meteorological forecasting system: GloFAS-Seasonal v1.0 , 2018, Geoscientific Model Development.

[40]  Y H Kerr,et al.  Multi‐Timescale Analysis of the Spatial Representativeness of In Situ Soil Moisture Data within Satellite Footprints , 2018, Journal of geophysical research. Atmospheres : JGR.

[41]  Pierre Gentine,et al.  Interdependence of climate, soil, and vegetation as constrained by the Budyko curve , 2012 .

[42]  Sonia I. Seneviratne,et al.  Basin‐scale water‐balance estimates of terrestrial water storage variations from ECMWF operational forecast analysis , 2006 .

[43]  Pedro M. A. Miranda,et al.  An offline study of the impact of lakes on the performance of the ECMWF surface scheme , 2010 .

[44]  W. Schlesinger,et al.  Transpiration in the global water cycle , 2014 .

[45]  David R. Easterling,et al.  Contemporary Changes of the Hydrological Cycle over the Contiguous United States: Trends Derived from In Situ Observations , 2004 .

[46]  Debbie Clifford,et al.  Global estimates of snow water equivalent from passive microwave instruments: history, challenges and future developments , 2010 .

[47]  Filipe Aires,et al.  Water, Energy, and Carbon with Artificial Neural Networks (WECANN): A statistically-based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence. , 2017, Biogeosciences.

[48]  Matthew F. McCabe,et al.  The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets , 2015 .

[49]  Carol Anne Clayson,et al.  The Effect of Diurnal Sea Surface Temperature Warming on Climatological Air–Sea Fluxes , 2013 .

[50]  W. Large,et al.  Diurnal cycling of sea surface temperature, salinity, and current in the CESM coupled climate model , 2015 .

[51]  A. Al Bitar,et al.  Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation , 2016 .

[52]  Michael Sprenger,et al.  The role of upper‐level dynamics and surface processes for the Pakistan flood of July 2010 , 2013 .

[53]  Lei Wang,et al.  Estimating continental river basin discharges using multiple remote sensing data sets , 2016 .

[54]  Ekaterina Kourzeneva External data for lake parameterization in Numerical Weather Prediction and climate modeling , 2010 .

[55]  Gilles Foret,et al.  Unaccounted variability in NH3 agricultural sources detected by IASI contributing to European spring haze episode , 2016 .

[56]  G. G. Rooney,et al.  The performance of FLake in the Met Office Unified Model , 2013 .

[57]  Lars Isaksen,et al.  Initialisation of Land Surface Variables for Numerical Weather Prediction , 2014, Surveys in Geophysics.

[58]  Luis Samaniego,et al.  The evolution of process-based hydrologic models: Historical challenges and the collective quest for physical realism. , 2017, Hydrology and earth system sciences.

[59]  Isabel F. Trigo,et al.  Advancing land surface model development with satellite-based Earth observations , 2016 .

[60]  Wade T. Crow,et al.  Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations , 2009 .

[61]  P. Gentine,et al.  Reconstructed Solar‐Induced Fluorescence: A Machine Learning Vegetation Product Based on MODIS Surface Reflectance to Reproduce GOME‐2 Solar‐Induced Fluorescence , 2018, Geophysical research letters.

[62]  Pierre Gentine,et al.  Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2 , 2018, Proceedings of the National Academy of Sciences.

[63]  Maria Tombrou,et al.  The International Urban Energy Balance Models Comparison Project: First Results from Phase 1 , 2010 .

[64]  Alfred T. C. Chang,et al.  Quantifying the uncertainty in passive microwave snow water equivalent observations , 2005 .

[65]  C. Donlon,et al.  The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission , 2012 .

[66]  Lars Isaksen,et al.  Soil Moisture Analyses at ECMWF: Evaluation Using Global Ground-Based In Situ Observations , 2012 .

[67]  Yosuke Fujii,et al.  Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project , 2017, Climate Dynamics.

[68]  Jiancheng Shi,et al.  The Future of Earth Observation in Hydrology. , 2017, Hydrology and earth system sciences.

[69]  H. Douville,et al.  A new snow parameterization for the Météo-France climate model , 1995 .

[70]  Jean-Noël Thépaut,et al.  The Concordiasi Project in Antarctica , 2010 .

[71]  Barbara Früh,et al.  The urban land use in the COSMO-CLM model: a comparison of three parameterizations for Berlin , 2014 .

[72]  A. Keen,et al.  Assessing the forecast skill of Arctic sea ice extent in the GloSea4 seasonal prediction system , 2014, Climate Dynamics.

[73]  E. Middleton,et al.  First observations of global and seasonal terrestrial chlorophyll fluorescence from space , 2010 .

[74]  Valentijn R. N. Pauwels,et al.  Remote Sensing-Derived Water Extent and Level to Constrain Hydraulic Flood Forecasting Models: Opportunities and Challenges , 2016, Surveys in Geophysics.

[75]  Matthew O. Jones,et al.  Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests , 2015 .

[76]  David J. Harding,et al.  Amazon forests maintain consistent canopy structure and greenness during the dry season , 2014, Nature.

[77]  Claire E. Bulgin,et al.  Impact of Assimilation of Sea‐Ice Surface Temperatures on a Coupled Ocean and Sea‐Ice Model , 2018 .

[78]  Kristian Mogensen,et al.  Tropical cyclone sensitivity to ocean coupling in the ECMWF coupled model , 2017 .

[79]  Benjamin Poulter,et al.  Enhanced methane emissions from tropical wetlands during the 2011 La Niña , 2017, Scientific Reports.

[80]  Dara Entekhabi,et al.  Global characterization of surface soil moisture drydowns , 2017 .

[81]  Ghislain Picard,et al.  SMRT: an active–passive microwave radiative transfer model for snow with multiple microstructure and scattering formulations (v1.0) , 2018, Geoscientific Model Development.

[82]  Jean-Noël Thépaut,et al.  The Concordiasi Field Experiment over Antarctica: First Results from Innovative Atmospheric Measurements , 2013 .

[83]  Vincent Guidard,et al.  Snow/atmosphere coupled simulation at Dome C, Antarctica , 2011, Journal of Glaciology.

[84]  Mahta Moghaddam,et al.  P-Band Radar Retrieval of Subsurface Soil Moisture Profile as a Second-Order Polynomial: First AirMOSS Results , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[85]  Yi Y. Liu,et al.  Global long‐term passive microwave satellite‐based retrievals of vegetation optical depth , 2011 .

[86]  Mike Schwank,et al.  Snow Density and Ground Permittivity Retrieved from L-Band Radiometry: Melting Effects , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[87]  Sonia I. Seneviratne,et al.  Observational evidence for soil-moisture impact on hot extremes in southeastern Europe , 2011 .

[88]  Matthias Drusch,et al.  SMOS-derived thin sea ice thickness: algorithm baseline, product specifications and initial verification , 2013 .

[89]  Wanqiu Wang,et al.  A GCM assessment of atmospheric seasonal predictability associated with soil moisture anomalies over North America , 1998 .

[90]  Kenneth C. Jezek,et al.  Radarsat Antarctic Mapping Project digital elevation model version 2 , 2001 .

[91]  Ralph Ferraro,et al.  The activities of the international precipitation working group , 2018, Quarterly journal of the Royal Meteorological Society. Royal Meteorological Society.

[92]  Fabienne Maignan,et al.  CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements , 2010 .

[93]  Devon E. Worth,et al.  Impact of land use change on the diurnal cycle climate of the Canadian Prairies , 2013 .

[94]  E. F. Bradley,et al.  Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm , 2003 .

[95]  Arnaud Mialon,et al.  Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands , 2018, Nature Ecology & Evolution.

[96]  Matthias Drusch,et al.  Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models , 2016 .

[97]  Chris Derksen,et al.  Assessment of Northern Hemisphere Snow Water Equivalent Datasets in ESA SnowPEx project , 2016 .

[98]  Sandra C. Freitas,et al.  Land surface temperature from multiple geostationary satellites , 2013 .

[99]  Neill Prohaska,et al.  Leaf flush drives dry season green-up of the Central Amazon , 2016 .

[100]  Adrian Barbu,et al.  Assimilation of surface soil moisture into a multilayer soil model: design and evaluation at local scale , 2013 .

[101]  Pierre Gentine,et al.  Role of surface heat fluxes underneath cold pools , 2016, Geophysical research letters.

[102]  S. Seneviratne,et al.  Global assessment of trends in wetting and drying over land , 2014 .

[103]  B. Hurk,et al.  A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System , 2009 .

[104]  Aneesh C. Subramanian,et al.  Coupled Impacts of the Diurnal Cycle of Sea Surface Temperature on the Madden–Julian Oscillation , 2014 .

[105]  Axel Timmermann,et al.  Impact of diurnal atmosphere–ocean coupling on tropical climate simulations using a coupled GCM , 2010 .

[106]  E. Fetzer,et al.  The Observed State of the Water Cycle in the Early Twenty-First Century , 2015 .

[107]  R. Dickinson,et al.  Drought onset mechanisms revealed by satellite solar‐induced chlorophyll fluorescence: Insights from two contrasting extreme events , 2015 .

[108]  Miller,et al.  The Anomalous Rainfall over the United States during July 1993: Sensitivity to Land Surface Parameterization and Soil Moisture Anomalies , 1996 .

[109]  David M. Lawrence,et al.  Evaluating the strength of the land–atmosphere moisture feedback in Earth system models using satellite observations , 2016 .

[110]  Devon E. Worth,et al.  Climate coupling between temperature, humidity, precipitation, and cloud cover over the Canadian Prairies , 2014 .

[111]  Ahmad Al Bitar,et al.  SMOS disaggregated soil moisture product at 1 km resolution: Processor overview and first validation results , 2016, Remote Sensing of Environment.

[112]  Vincent-Henri Peuch,et al.  Forecasting global atmospheric CO 2 , 2014 .

[113]  S. Seneviratne,et al.  Influence of land‐atmosphere feedbacks on temperature and precipitation extremes in the GLACE‐CMIP5 ensemble , 2016 .

[114]  Florian Pappenberger,et al.  Skilful seasonal forecasts of streamflow over Europe , 2017 .

[115]  Tao Wang,et al.  Preferential cooling of hot extremes from cropland albedo management , 2014, Proceedings of the National Academy of Sciences.

[116]  Diego G. Miralles,et al.  Reconciling spatial and temporal soil moisture effects on afternoon rainfall , 2015, Nature Communications.

[117]  Richard Neale,et al.  Scale interactions on diurnal toseasonal timescales and their relevanceto model systematic errors , 2003 .

[118]  Diego G. Miralles,et al.  Magnitude and variability of land evaporation and its components at the global scale , 2011 .

[119]  E. Fischer,et al.  Contribution of land‐atmosphere coupling to recent European summer heat waves , 2007 .

[120]  T. Holmes,et al.  Global land-surface evaporation estimated from satellite-based observations , 2010 .

[121]  Sujay V. Kumar,et al.  Attribution of Flux Partitioning Variations between Land Surface Models over the Continental U.S , 2018, Remote. Sens..

[122]  J. Pelletier,et al.  A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling , 2016 .

[123]  P. Bernath,et al.  Global stratospheric measurements of the isotopologues of methane from the Atmospheric Chemistry Experiment Fourier transform spectrometer , 2015 .

[124]  T. Palmer,et al.  A personal perspective on modelling the climate system , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[125]  D. McLaughlin,et al.  Downscaling of radio brightness measurements for soil moisture estimation: A four‐dimensional variational data assimilation approach , 2001 .

[126]  Howard E. Epstein,et al.  The thermoinsulation effect of snow cover within a climate model , 2008 .

[127]  Bjorn Stevens,et al.  Supplementary Information for The role of the permanent wilting point in controlling the spatial distribution of precipitation , 2018 .

[128]  Jean-Christophe Calvet,et al.  Satellite Data Assimilation: Application to the Water and Carbon Cycles , 2016 .

[129]  Diana Verseghy,et al.  Offline Implementation and Evaluation of the Canadian Small Lake Model with the Canadian Land Surface Scheme over Western Canada , 2017 .

[130]  Lars Isaksen,et al.  Soil temperature at ECMWF: An assessment using ground‐based observations , 2015 .

[131]  Randal D. Koster,et al.  An updated treatment of soil texture and associated hydraulic properties in a global land modeling system , 2014 .

[132]  R. Buizza,et al.  The ECMWF research to operations ( R 2 O ) process , 2017 .

[133]  E. Guilyardi,et al.  Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 2: A diurnally coupled CGCM , 2007 .

[134]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[135]  John Gould,et al.  ARGO - a decade of progress , 2010 .

[136]  William E Dietrich,et al.  A bottom-up control on fresh-bedrock topography under landscapes , 2014, Proceedings of the National Academy of Sciences.

[137]  A. Beljaars The parametrization of surface fluxes in large-scale models under free convection , 1995 .

[138]  Pierre Gentine,et al.  Coupling between radiative flux divergence and turbulence near the surface , 2018, Quarterly Journal of the Royal Meteorological Society.

[139]  D. Easterling,et al.  Changes in climate extremes and their impacts on the natural physical environment , 2012 .

[140]  Wei Li,et al.  Ocean Surface Wind Retrieval Using SMAP L-Band SAR , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[141]  Z. Su The Surface Energy Balance System ( SEBS ) for estimation of turbulent heat fluxes , 2002 .

[142]  A. Arneth,et al.  Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations , 2011 .

[143]  L. Gómez-Chova,et al.  Developments for vegetation fluorescence retrieval from spaceborne high‐resolution spectrometry in the O2‐A and O2‐B absorption bands , 2010 .

[144]  Miguel Potes,et al.  On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model , 2012 .

[145]  K. Steffen,et al.  Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland , 2008 .

[146]  Pierre Gentine,et al.  Tall Amazonian forests are less sensitive to precipitation variability , 2018, Nature Geoscience.

[147]  Jean-Pierre Wigneron,et al.  An interactive vegetation SVAT model tested against data from six contrasting sites , 1998 .

[148]  Claude R. Duguay,et al.  Impact of partly ice-free Lake Ladoga on temperature and cloudiness in an anticyclonic winter situation – a case study using a limited area model , 2014 .

[149]  Arnaud Mialon,et al.  Comparison of SMOS and AMSR-E vegetation optical depth to four MODIS-based vegetation indices , 2016 .

[150]  Christopher M. Taylor,et al.  Large-Scale Surface Responses during European Dry Spells Diagnosed from Land Surface Temperature , 2016 .

[151]  Axel Schweiger,et al.  Evaluation of Seven Different Atmospheric Reanalysis Products in the Arctic , 2014 .

[152]  Olivier Boucher,et al.  Subregional inversion of North African dust sources , 2016 .

[153]  Luigi Cavaleri,et al.  Wind Waves in the Coupled Climate System , 2012 .

[154]  Wade T. Crow,et al.  Assessment of the SMAP Level-4 surface and root-zone soil moisture product using in situ measurements , 2017 .

[155]  M. Piles,et al.  Comparing surface-soil moisture from the SMOS mission and the ORCHIDEE land-surface model over the Iberian Peninsula , 2016 .

[156]  Jana Kolassa,et al.  Global Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using Assimilation Diagnostics. , 2017, Journal of hydrometeorology.

[157]  G. Balsamo,et al.  Use of in situ observations to verify the diurnal cycle of sea surface temperature in ECMWF coupled model forecasts , 2018 .

[158]  Alfredo Huete,et al.  Dry-season greening of Amazon forests , 2016, Nature.

[159]  Christopher J. Merchant,et al.  Surface water temperature observations of large lakes by optimal estimation , 2012 .

[160]  Christopher W. Fairall,et al.  An assessment of buoy-derived and numerical weather prediction surface heat fluxes in the tropical Pacific , 2006 .

[161]  Thomas J. Jackson,et al.  Effective tree scattering and opacity at L-band , 2012 .

[162]  Peter Toose,et al.  Snow density and ground permittivity retrieved from L-band radiometry: Application to experimental data , 2016 .

[163]  Wenqing Tang,et al.  Combined Active/Passive Retrievals of Ocean Vector Wind and Sea Surface Salinity With SMAP , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[164]  David J. Weary,et al.  Karst in the United States: A digital map compilation and database , 2014 .

[165]  Aaron A. Berg,et al.  Hyperresolution Land Surface Modeling in the Context of SMAP Cal–Val , 2016 .

[166]  J. Shukla,et al.  Influence of Land-Surface Evapotranspiration on the Earth's Climate , 1982, Science.

[167]  Ahmad Al Bitar,et al.  MAPSM: A Spatio-Temporal Algorithm for Merging Soil Moisture from Active and Passive Microwave Remote Sensing , 2016, Remote. Sens..

[168]  James C. McWilliams,et al.  Diurnal Coupling in the Tropical Oceans of CCSM3 , 2006 .

[169]  Janet Sprintall,et al.  Subseasonal variations in salinity and barrier‐layer thickness in the eastern equatorial Indian Ocean , 2014 .

[170]  Stephen P. Good,et al.  Hydrologic connectivity constrains partitioning of global terrestrial water fluxes , 2015, Science.

[171]  Richard de Jeu,et al.  Analytical derivation of the vegetation optical depth from the microwave polarization difference index , 2005, IEEE Geoscience and Remote Sensing Letters.

[172]  Hartmut Boesch,et al.  Role of regional wetland emissions in atmospheric methane variability , 2016 .

[173]  Dara Entekhabi,et al.  Regionally strong feedbacks between the atmosphere and terrestrial biosphere. , 2017, Nature geoscience.

[174]  Thierry Fichefet,et al.  Interactions between wind-blown snow redistribution and melt ponds in a coupled ocean–sea ice model , 2015 .

[175]  S. Seneviratne,et al.  No pause in the increase of hot temperature extremes , 2014 .

[176]  Damien Sulla-Menashe,et al.  A Global Land Cover Climatology Using MODIS Data , 2014 .

[177]  Henk Eskes,et al.  Decadal changes in global surface NO x emissions from multi-constituent satellite data assimilation , 2016 .

[178]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[179]  C. Frankenberg,et al.  Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO 2 retrievals , 2012 .

[180]  Chris Derksen,et al.  Retrieval of Effective Correlation Length and Snow Water Equivalent from Radar and Passive Microwave Measurements , 2018, Remote. Sens..

[181]  J. Mahfouf,et al.  Assimilation of satellite‐derived soil moisture from ASCAT in a limited‐area NWP model , 2010 .

[182]  Clément Albergel,et al.  Assimilation of surface albedo and vegetation states from satellite observations and their impact on numerical weather prediction , 2015 .

[183]  F. Pappenberger,et al.  ERA-Interim/Land: a global land surface reanalysis data set , 2015 .

[184]  Florian Pappenberger,et al.  Continental and global scale flood forecasting systems , 2016 .

[185]  Massimiliano Zappa,et al.  Does model performance improve with complexity? : A case study with three hydrological models , 2015 .

[186]  Chris Derksen,et al.  Canadian snow and sea ice: historical trends and projections , 2018 .

[187]  Sonia I. Seneviratne,et al.  Introduction of a simple-model-based land surface dataset for Europe , 2015 .

[188]  M. S. Moran,et al.  Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence , 2014, Proceedings of the National Academy of Sciences.

[189]  S. Seneviratne,et al.  Evaluation of global observations‐based evapotranspiration datasets and IPCC AR4 simulations , 2011 .

[190]  Matthew O. Jones,et al.  Satellite passive microwave remote sensing for monitoring global land surface phenology , 2011 .

[191]  Pierre Gentine,et al.  A Probabilistic Bulk Model of Coupled Mixed Layer and Convection. Part II: Shallow Convection Case , 2013 .

[192]  Darren Ghent,et al.  Global observational diagnosis of soil moisture control on the land surface energy balance , 2016 .

[193]  Dara Entekhabi,et al.  Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized L-band radiometer observations , 2016 .

[194]  Philip Lewis,et al.  Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements , 2012 .

[195]  Jin-Song von Storch,et al.  Air–sea fluxes in a climate model using hourly coupling between the atmospheric and the oceanic components , 2015, Climate Dynamics.

[196]  Matthieu Chevallier,et al.  The Role of Sea Ice Thickness Distribution in the Arctic Sea Ice Potential Predictability: A Diagnostic Approach with a Coupled GCM , 2012 .

[197]  Hartmut Boesch,et al.  Evaluating year-to-year anomalies in tropical wetland methane emissions using satellite CH4 observations , 2018, Remote Sensing of Environment.

[198]  Thomas A. Hennig,et al.  The Shuttle Radar Topography Mission , 2001, Digital Earth Moving.

[199]  Y. Kerr,et al.  Effective Scattering Albedo of Forests Retrieved by SMOS and a Three-Parameter Algorithm , 2017, IEEE Geoscience and Remote Sensing Letters.

[200]  Paul A. Dirmeyer,et al.  The Role of the Land Surface Background State in Climate Predictability , 2003 .

[201]  C. Duguay,et al.  The response and role of ice cover in lake-climate interactions , 2010 .

[202]  S. Xie,et al.  Tropical Biases in CMIP5 Multimodel Ensemble: The Excessive Equatorial Pacific Cold Tongue and Double ITCZ Problems* , 2014 .

[203]  Thomas J. Jackson,et al.  A First-Order Radiative Transfer Model for Microwave Radiometry of Forest Canopies at L-Band , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[204]  J. Comiso,et al.  Variability and trends in the Arctic Sea ice cover: Results from different techniques , 2017 .

[205]  M. Drusch,et al.  Assimilation of Screen-Level Variables in ECMWF’s Integrated Forecast System: A Study on the Impact on the Forecast Quality and Analyzed Soil Moisture , 2007 .

[206]  Martin O. Jeffries,et al.  A Method To Determine Lake Depth and Water Availability on the North Slope of Alaska with Spaceborne Imaging Radar and Numerical Ice Growth Modelling , 1996 .

[207]  C. Amante,et al.  ETOPO1 Global Relief Model converted to PanMap layer format , 2009 .

[208]  Laurent Arnaud,et al.  Using MODIS land surface temperatures and the Crocus snow model to understand the warm bias of ERA-Interim reanalyses at the surface in Antarctica , 2014 .

[209]  K. Oleson,et al.  An Urban Parameterization for a Global Climate Model. Part I: Formulation and Evaluation for Two Cities , 2008 .

[210]  Pascal Yiou,et al.  Asymmetric European summer heat predictability from wet and dry southern winters and springs , 2012 .

[211]  C. Frankenberg,et al.  New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity , 2011, Geophysical Research Letters.

[212]  Gianpaolo Balsamo,et al.  A biogenic CO 2 flux adjustment scheme for the mitigation of large-scale biases inglobal atmospheric CO 2 analyses and forecasts , 2016 .

[213]  Mark Buehner,et al.  The Regional Ice Prediction System (RIPS): verification of forecast sea ice concentration , 2016 .

[214]  Yoshimi Kawai,et al.  Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review , 2007 .

[215]  P. Cox,et al.  Observing terrestrial ecosystems and the carbon cycle from space , 2015, Global change biology.

[216]  A. Al Bitar,et al.  The global SMOS Level 3 daily soil moisture and brightness temperature maps , 2017 .

[217]  L. Alfieri,et al.  GloFAS – global ensemble streamflow forecasting and flood early warning , 2012 .

[218]  Ekaterina Sukhova,et al.  Connection of the Photochemical Reflectance Index (PRI) with the Photosystem II Quantum Yield and Nonphotochemical Quenching Can Be Dependent on Variations of Photosynthetic Parameters among Investigated Plants: A Meta-Analysis , 2018, Remote. Sens..

[219]  Nektarios Chrysoulakis,et al.  Urban energy exchanges monitoring from space , 2018, Scientific Reports.

[220]  Margarita Choulga,et al.  Estimation of the mean depth of boreal lakes for use in numerical weather prediction and climate modelling , 2014 .

[221]  Ivan Mammarella,et al.  Representing Land Surface Heterogeneity: Offline Analysis of the Tiling Method , 2013 .

[222]  Isabel F. Trigo,et al.  Comparison of model land skin temperature with remotely sensed estimates and assessment of surface‐atmosphere coupling , 2015 .

[223]  D. Lettenmaier,et al.  Assimilating remotely sensed snow observations into a macroscale hydrology model , 2006 .

[224]  C. Daughtry,et al.  Remote- and Ground-Based Sensor Techniques to Map Soil Properties , 2003 .

[225]  Keith Beven,et al.  Hyperresolution information and hyperresolution ignorance in modelling the hydrology of the land surface , 2014, Science China Earth Sciences.

[226]  Florian Pappenberger,et al.  Improving weather predictability by including land-surface model parameter uncertainty , 2016 .

[227]  Paul A. Dirmeyer,et al.  Indications of Surface and Sub-Surface Hydrologic Properties from SMAP Soil Moisture Retrievals , 2018, Hydrology.

[228]  Philippe Richaume,et al.  SMOS near-real-time soil moisture product: processor overview and first validation results , 2017 .

[229]  Dara Entekhabi,et al.  The Diurnal Behavior of Evaporative Fraction in the Soil-Vegetation-Atmospheric Boundary Layer Continuum , 2011 .

[230]  Sonia I. Seneviratne,et al.  Climate engineering of vegetated land for hot extremes mitigation: An Earth system model sensitivity study , 2015 .

[231]  Y. Kerr,et al.  Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations , 2012 .

[232]  Philippe Ciais,et al.  A framework for benchmarking land models , 2012 .

[233]  P. de Rosnay,et al.  Integrated parameterization of irrigation in the land surface model ORCHIDEE. Validation over Indian Peninsula , 2003 .

[234]  C. Taylor,et al.  Afternoon rain more likely over drier soils , 2012, Nature.

[235]  Martin Brandt,et al.  Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel , 2016 .

[236]  Lukas Gudmundsson,et al.  Towards observation-based gridded runoff estimates for Europe , 2014 .

[237]  Claude R. Duguay,et al.  Determining depth and ice thickness of shallow sub-Arctic lakes using space-borne optical and SAR data , 2003 .

[238]  Peter Bauer,et al.  The quiet revolution of numerical weather prediction , 2015, Nature.

[239]  Markus Reichstein,et al.  On the assignment of prior errors in Bayesian inversions of CO2 surface fluxes , 2006 .

[240]  Andreas Colliander,et al.  Soil Moisture Active Passive (SMAP) Project Assessment Report for Version 4 of the L4_SM Data Product , 2018 .

[241]  Randal D. Koster,et al.  Land Boundary Conditions for the Goddard Earth Observing System Model Version 5 (GEOS-5) Climate Modeling System: Recent Updates and Data File Descriptions , 2015 .

[242]  Florian Pappenberger,et al.  On the Operational Implementation of the European Flood Awareness System (EFAS) , 2016 .

[243]  Thomas R. Karl,et al.  Observed Impact of Snow Cover on the Heat Balance and the Rise of Continental Spring Temperatures , 1994, Science.

[244]  Lars Kaleschke,et al.  Thin Arctic sea ice in L-band observations and an ocean reanalysis , 2018, The Cryosphere.

[245]  Ghislain Picard,et al.  SMRT: an active–passive microwave radiative transfer model for snow with multiple microstructure and scattering formulations (v1.0) , 2018, Geoscientific Model Development.

[246]  Andreas Schumann,et al.  Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets , 2008 .

[247]  Steffen Tietsche,et al.  Will Arctic sea ice thickness initialization improve seasonal forecast skill? , 2014 .

[248]  Arnaud Mialon,et al.  SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product , 2017, Remote. Sens..

[249]  E. Heise,et al.  Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO , 2010 .

[250]  Vijay Natraj,et al.  Constraints on methane emissions in North America from future geostationary remote-sensing measurements , 2015 .

[251]  S. Manabe CLIMATE AND THE OCEAN CIRCULATION1 , 1969 .

[252]  Florian Pappenberger,et al.  How do I know if I’ve improved my continental scale flood early warning system? , 2017 .

[253]  Stephen G. Penny,et al.  Coupled Data Assimilation for Integrated Earth System Analysis and Prediction: Goals, Challenges, and Recommendations , 2017 .

[254]  E. Sudicky,et al.  Hyper‐resolution global hydrological modelling: what is next? , 2015 .

[255]  S. Seneviratne,et al.  Hot days induced by precipitation deficits at the global scale , 2012, Proceedings of the National Academy of Sciences.

[256]  J. Curry,et al.  Surface Heat Budget of the Arctic Ocean , 2002 .

[257]  Yosuke Fujii,et al.  Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 2 (JMA/MRI-CPS2): atmosphere–land–ocean–sea ice coupled prediction system for operational seasonal forecasting , 2018, Climate Dynamics.

[258]  S. Seneviratne,et al.  Allowable CO2 emissions based on regional and impact-related climate targets , 2016, Nature.

[259]  Florence Fetterer,et al.  Observations of melt ponds on Arctic sea ice , 1998 .

[260]  C. Frankenberg,et al.  Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2 , 2013 .

[261]  Martyn P. Clark,et al.  HESS Opinions: The need for process-based evaluation of large-domain hyper-resolution models , 2015 .

[262]  Gianpaolo Balsamo,et al.  A bare ground evaporation revision in the ECMWF land-surface scheme: evaluation of its impact using ground soil moisture and satellite microwave data , 2012 .

[263]  D. Lawrence,et al.  Regions of Strong Coupling Between Soil Moisture and Precipitation , 2004, Science.

[264]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[265]  V. Brovkin,et al.  Impact of soil moisture‐climate feedbacks on CMIP5 projections: First results from the GLACE‐CMIP5 experiment , 2013 .

[266]  Paul Poli,et al.  Arctic warming in ERA‐Interim and other analyses , 2015 .

[267]  Pierre Gentine,et al.  Global variations in ecosystem‐scale isohydricity , 2017, Global change biology.

[268]  Michael J. Puma,et al.  Effects of irrigation on global climate during the 20th century , 2010 .

[269]  Justin S. Mankin,et al.  Unprecedented climate events: Historical changes, aspirational targets, and national commitments , 2018, Science Advances.

[270]  E. Guilyardi,et al.  Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 1: a diurnally forced OGCM , 2007 .

[271]  C. Bretherton,et al.  The Soil Moisture–Precipitation Feedback in Simulations with Explicit and Parameterized Convection , 2009 .

[272]  Yann Kerr,et al.  The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle , 2010, Proceedings of the IEEE.

[273]  Yann Kerr,et al.  Correcting satellite-based precipitation products through SMOS soil moisture data assimilation in two land-surface models of different complexity: API and SURFEX , 2017 .

[274]  Sean Milton,et al.  An Evaluation of Modeled Evaporation Regimes in Europe Using Observed Dry Spell Land Surface Temperature , 2017 .

[275]  Xubin Zeng,et al.  Improving the Numerical Solution of Soil Moisture-Based Richards Equation for Land Models with a Deep or Shallow Water Table , 2009 .

[276]  Kelly Elder,et al.  Evaluation of forest snow processes models (SnowMIP2) , 2009 .

[277]  Ross D. Brown,et al.  Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts , 2016, Ambio.

[278]  Jean-François Mahfouf,et al.  The representation of soil moisture freezing and its impact on the stable boundary layer , 1999 .

[279]  Atul K. Jain,et al.  Compensatory water effects link yearly global land CO2 sink changes to temperature , 2017, Nature.

[280]  Christian Frankenberg,et al.  Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl , 2017, Proceedings of the National Academy of Sciences.

[281]  Xingang Fan,et al.  Evaluating Weather Research and Forecasting Model Sensitivity to Land and Soil Conditions Representative of Karst Landscapes , 2018, Boundary-Layer Meteorology.

[282]  J. Randerson,et al.  Terrestrial ecosystem production: A process model based on global satellite and surface data , 1993 .

[283]  J. Pekel,et al.  High-resolution mapping of global surface water and its long-term changes , 2016, Nature.

[284]  Frédéric Baret,et al.  GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production , 2013 .

[285]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[286]  Dario Papale,et al.  Natural land carbon dioxide exchanges in the ECMWF integrated forecasting system: Implementation and offline validation , 2013 .

[287]  P. Samuelsson,et al.  The impact of lakes on the European climate as simulated by a regional climate model , 2010 .

[288]  Bertrand Decharme,et al.  Impact of lake surface temperatures simulated by the FLake scheme in the CNRM-CM5 climate model , 2016 .

[289]  M. Ek,et al.  Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water , 2011 .

[290]  Benjamin Poulter,et al.  Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP) , 2012 .

[291]  R. Koster,et al.  Modeling the land surface boundary in climate models as a composite of independent vegetation stands , 1992 .

[292]  Arnaud Mialon,et al.  Modeling L-Band Brightness Temperature at Dome C in Antarctica and Comparison With SMOS Observations , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[293]  Steven W. Running,et al.  Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization , 2016 .

[294]  S. Seneviratne,et al.  Land–atmosphere coupling and climate change in Europe , 2006, Nature.

[295]  C. Verpoorter,et al.  A global inventory of lakes based on high‐resolution satellite imagery , 2014 .

[296]  Lionel Jarlan,et al.  Impact of a satellite-derived leaf area index monthly climatology in a global numerical weather prediction model , 2013 .

[297]  Diego G. Miralles,et al.  Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation , 2014 .

[298]  Emanuel Dutra,et al.  Understanding the ECMWF winter surface temperature biases over Antarctica , 2015 .

[299]  P. Bechtold,et al.  Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? , 2013 .

[300]  Zhongbo Su,et al.  Assimilation of Satellite-Observed Snow Albedo in a Land Surface Model , 2012 .

[301]  J. Mahfouf,et al.  The ISBA land surface parameterisation scheme , 1996 .

[302]  Marc Bocquet,et al.  Data Assimilation: Methods, Algorithms, and Applications , 2016 .

[303]  R. Vose,et al.  An Overview of the Global Historical Climatology Network-Daily Database , 2012 .

[304]  Niels Skou,et al.  SMOS sea ice product: operational application and validation in the Barents Sea marginal ice zone , 2016 .

[305]  V. Brovkin,et al.  The Global Methane Budget 2000–2017 , 2016, Earth System Science Data.

[306]  P. Ciais,et al.  Widespread decline of Congo rainforest greenness in the past decade , 2014, Nature.

[307]  R. Lumpkin,et al.  Measuring surface currents with Surface Velocity Program drifters : the instrument , its data , and some recent results , 2022 .

[308]  Jean-François Mahfouf,et al.  A new snow parameterization for the Météo-France climate model , 1995 .

[309]  Philippe Ciais,et al.  Changes in the Response of the Northern Hemisphere Carbon Uptake to Temperature Over the Last Three Decades , 2018 .

[310]  A. Robock,et al.  The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements , 2011 .

[311]  E. Hawkins,et al.  Seasonal to interannual Arctic sea ice predictability in current global climate models , 2014 .

[312]  D. Dee,et al.  Variational bias correction of satellite radiance data in the ERA‐Interim reanalysis , 2009 .

[313]  R. Dickinson,et al.  Satellite Solar-induced Chlorophyll Fluorescence Reveals Drought Onset Mechanisms: Insights from Two Contrasting Extreme Events , 2015 .

[314]  Pierre Gentine,et al.  Modification of land‐atmosphere interactions by CO2 effects: Implications for summer dryness and heat wave amplitude , 2016 .

[315]  Devon E. Worth,et al.  Coupling of winter climate transitions to snow and clouds over the Prairies , 2014 .

[316]  Philippe Richaume,et al.  Soil Moisture Retrieval Using Neural Networks: Application to SMOS , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[317]  D. Baldocchi,et al.  Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites , 2008 .

[318]  Praveen Kumar,et al.  A catchment‐based approach to modeling land surface processes in a general circulation model: 1. Model structure , 2000 .

[319]  Meghan F. Cronin,et al.  Near-Surface Shear Flow in the Tropical Pacific Cold Tongue Front* , 2009 .

[320]  T. Yamagata,et al.  Impact of intra-daily SST variability on ENSO characteristics in a coupled model , 2012, Climate Dynamics.

[321]  S. Riser,et al.  The Argo Program : observing the global ocean with profiling floats , 2009 .

[322]  Xuguang Wang,et al.  THORPEX Research and the Science of Prediction , 2017 .

[323]  Pedro M. A. Miranda,et al.  Deriving an effective lake depth from satellite lake surface temperature data: a feasibility study with MODIS data , 2010 .

[324]  S. Déry,et al.  Future Climate Change Impacts on Snow and Water Resources of the Fraser River Basin, British Columbia , 2017 .

[325]  Thomas L. Delworth,et al.  Climate variability and land-surface processes , 1993 .

[326]  Wanqiu Wang,et al.  Impact of Model Physics on Seasonal Forecasts of Surface Air Temperature in the Arctic , 2017 .

[327]  L. Kaleschke,et al.  Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network , 2011 .

[328]  Olivier Merlin,et al.  Towards a surface soil moisture product at high spatio-temporal resolution: temporally-interpolated spatially-disaggregated SMOS data , 2017 .

[329]  Eric Guilyardi,et al.  Modeling Diurnal and Intraseasonal Variability of the Ocean Mixed Layer , 2005 .

[330]  D. Hannah,et al.  Large‐scale river flow archives: importance, current status and future needs , 2011 .

[331]  J. Randerson,et al.  Global fire emissions estimates during 1997–2016 , 2017 .

[332]  Sabine Chabrillat,et al.  Prediction of Common Surface Soil Properties Based on Vis-NIR Airborne and Simulated EnMAP Imaging Spectroscopy Data: Prediction Accuracy and Influence of Spatial Resolution , 2016, Remote. Sens..

[333]  E. S. Krayenhoff,et al.  Initial results from Phase 2 of the international urban energy balance model comparison , 2011 .

[334]  Marco Brogioni,et al.  Analyzing and modeling the SMOS spatial variations in the East Antarctic Plateau , 2016 .

[335]  Nicole Van Lipzig,et al.  The impact of the African great lakes on the regional climate , 2013 .