Detecting crosstalk errors in quantum information processors.

Crosstalk occurs in most quantum computing systems with more than one qubit. It can cause a variety of correlated and nonlocal crosstalk errors that can be especially harmful to fault-tolerant quantum error correction, which generally relies on errors being local and relatively predictable. Mitigating crosstalk errors requires understanding, modeling, and detecting them. In this paper, we introduce a comprehensive framework for crosstalk errors and a protocol for detecting and localizing them. We give a rigorous definition of crosstalk errors that captures a wide range of disparate physical phenomena that have been called "crosstalk", and a concrete model for crosstalk-free quantum processors. Errors that violate this model are crosstalk errors. Next, we give an equivalent but purely operational (model-independent) definition of crosstalk errors. Using this definition, we construct a protocol for detecting a large class of crosstalk errors in a multi-qubit processor by finding conditional dependencies between observed experimental probabilities. It is highly efficient, in the sense that the number of unique experiments required scales at most cubically, and very often quadratically, with the number of qubits. We demonstrate the protocol using simulations of 2-qubit and 6-qubit processors.

[1]  C. K. Andersen,et al.  Rapid High-fidelity Multiplexed Readout of Superconducting Qubits , 2018, Physical Review Applied.

[2]  J. Gambetta,et al.  Procedure for systematically tuning up cross-talk in the cross-resonance gate , 2016, 1603.04821.

[3]  Rainer Blatt,et al.  Characterizing large-scale quantum computers via cycle benchmarking , 2019, Nature Communications.

[4]  Michal Oszmaniec,et al.  Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography , 2019, Quantum.

[5]  C. J. Wood,et al.  The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning , 2012, 1208.4119.

[6]  Robin Blume-Kohout,et al.  Direct Randomized Benchmarking for Multiqubit Devices. , 2018, Physical review letters.

[7]  A. Varon,et al.  A trapped-ion-based quantum byte with 10−5 next-neighbour cross-talk , 2014, Nature Communications.

[8]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[9]  Franz von Kutschera,et al.  Causation , 1993, J. Philos. Log..

[10]  F. F. Mazda,et al.  Telecommunications engineer's reference book , 1998 .

[11]  Steven T. Flammia,et al.  Randomized benchmarking with confidence , 2014, 1404.6025.

[12]  Jiuyong Li,et al.  A Fast PC Algorithm for High Dimensional Causal Discovery with Multi-Core PCs , 2015, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[13]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[14]  Z. Jane Wang,et al.  Controlling the False Discovery Rate of the Association/Causality Structure Learned with the PC Algorithm , 2009, J. Mach. Learn. Res..

[15]  Francesco Ciccarello,et al.  Dynamical decoupling efficiency versus quantum non-Markovianity , 2015, 1502.02528.

[16]  Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics , 2004, cond-mat/0405676.

[17]  Nelson Leung,et al.  A dissipatively stabilized Mott insulator of photons , 2018, Nature.

[18]  S. Sarma,et al.  Crosstalk error correction through dynamical decoupling of single-qubit gates in capacitively coupled singlet-triplet semiconductor spin qubits , 2017, 1711.02092.

[19]  Linda C. van der Gaag,et al.  Probabilistic Graphical Models , 2014, Lecture Notes in Computer Science.

[20]  John T. Lewis,et al.  An operational approach to quantum probability , 1970 .

[21]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[22]  P. Spirtes,et al.  An Algorithm for Fast Recovery of Sparse Causal Graphs , 1991 .

[23]  T. Koski,et al.  A Review of Bayesian Networks and Structure Learning , 2012 .

[24]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[25]  Yee Whye Teh,et al.  Causal Inference via Kernel Deviance Measures , 2018, NeurIPS.

[26]  T. M. Stace,et al.  Experimental quantum verification in the presence of temporally correlated noise , 2017, 1706.03787.

[27]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[28]  Ny,et al.  Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits , 2009, 0910.1118.

[29]  Sabrina Hong,et al.  Demonstration of universal parametric entangling gates on a multi-qubit lattice , 2017, Science Advances.

[30]  S. J. van Enk,et al.  Macroscopic instructions vs microscopic operations in quantum circuits , 2017, Physics Letters A.

[31]  M Steffen,et al.  Characterization of addressability by simultaneous randomized benchmarking. , 2012, Physical review letters.

[32]  Timothy Proctor,et al.  Probing Context-Dependent Errors in Quantum Processors , 2018, Physical Review X.

[33]  Tom Burr,et al.  Causation, Prediction, and Search , 2003, Technometrics.

[34]  Diego Colombo,et al.  Order-independent constraint-based causal structure learning , 2012, J. Mach. Learn. Res..

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  Davide Bacciu,et al.  Efficient identification of independence networks using mutual information , 2012, Computational Statistics.

[37]  D. Gross,et al.  Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.

[38]  Caroline Uhler,et al.  Faithfulness and learning hypergraphs from discrete distributions , 2014, Comput. Stat. Data Anal..

[39]  Peter Spirtes,et al.  Introduction to Causal Inference , 2010, J. Mach. Learn. Res..

[40]  Erik Nielsen,et al.  Detecting, tracking, and eliminating drift in quantum information processors , 2019, 1907.13608.

[41]  Anthony D. Castellano,et al.  Genuine 12-Qubit Entanglement on a Superconducting Quantum Processor. , 2018, Physical review letters.

[42]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[43]  Sarah Sheldon,et al.  Three-Qubit Randomized Benchmarking. , 2017, Physical review letters.

[44]  Shyam Visweswaran,et al.  Estimating and Controlling the False Discovery Rate of the PC Algorithm Using Edge-specific P-Values , 2016, ACM Trans. Intell. Syst. Technol..

[45]  Bernhard Schölkopf,et al.  Towards a Learning Theory of Causation , 2015, 1502.02398.

[46]  Peter Bühlmann,et al.  Estimating High-Dimensional Directed Acyclic Graphs with the PC-Algorithm , 2007, J. Mach. Learn. Res..

[47]  Kenneth Rudinger,et al.  What Randomized Benchmarking Actually Measures. , 2017, Physical review letters.

[48]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[49]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[50]  Patrick Hayden,et al.  Multiparty data hiding of quantum information , 2005 .

[51]  Peter Maunz,et al.  Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography , 2016, Nature Communications.

[52]  M. Weides,et al.  Generation of three-qubit entangled states using superconducting phase qubits , 2010, Nature.

[53]  GusfieldDan Introduction to the IEEE/ACM Transactions on Computational Biology and Bioinformatics , 2004 .

[54]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[55]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[56]  Peter Spirtes,et al.  Causal discovery and inference: concepts and recent methodological advances , 2016, Applied Informatics.

[57]  Richard E. Neapolitan,et al.  Learning Bayesian networks , 2007, KDD '07.

[58]  Rupak Majumdar,et al.  Why is random testing effective for partition tolerance bugs? , 2017, Proc. ACM Program. Lang..

[59]  W. Marsden I and J , 2012 .

[60]  Li Li,et al.  Concepts of quantum non-Markovianity: A hierarchy , 2017, Physics Reports.

[61]  D. Clayton,et al.  The Simpson's paradox unraveled. , 2011, International journal of epidemiology.