Four-zone varifocus mirrors with adaptive control of primary and higher-order spherical aberration.

Electrostatically actuated deformable mirrors with four concentric annular electrodes can exert independent control over defocus as well as primary, secondary, and tertiary spherical aberration. In this paper we use both numerical modeling and physical measurements to characterize recently developed deformable mirrors with respect to the amount of spherical aberration each can impart, and the dependence of that aberration control on the amount of defocus the mirror is providing. We find that a four-zone, 4 mm diameter mirror can generate surface shapes with arbitrary primary, secondary, and tertiary spherical aberration over ranges of ±0.4, ±0.2, and ±0.15  μm, respectively, referred to a non-normalized Zernike polynomial basis. We demonstrate the utility of this mirror for aberration-compensated focusing of a high NA optical system.

[1]  Samuel Rosset,et al.  Microactuators based on ion implanted dielectric electroactive polymer (EAP) membranes , 2006 .

[2]  J. Dugundji,et al.  Large Deflections of Clamped Circular Plates Under Initial Tension and Transitions to Membrane Behavior , 1998 .

[3]  Polymer-based membrane mirrors for micro-optical sensors , 2003, Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498).

[4]  J. A. Walker,et al.  Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch , 2005 .

[5]  F. Gonte,et al.  Micro-optical fiber switch for a large number of interconnects using a deformable mirror , 2001, IEEE Photonics Technology Letters.

[6]  J. H. Park,et al.  Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects. , 2008, Optics express.

[7]  D. Dickensheets,et al.  SU-8 2002 Surface Micromachined Deformable Membrane Mirrors , 2013, Journal of Microelectromechanical Systems.

[8]  Peter De Dobbelaere,et al.  Advances in integrated 2D MEMS-based solutions for optical network applications , 2003, IEEE Commun. Mag..

[9]  David L. Dickensheets,et al.  MEMS deformable mirrors for focus control in vital microscopy , 2010, MOEMS-MEMS.

[10]  Chia-Hsiang Menq,et al.  Three-axis rapid steering of optically propelled micro/nanoparticles. , 2009, The Review of scientific instruments.

[11]  Guo-Dung John Su,et al.  Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control , 2011 .

[12]  C. Dainty,et al.  Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors. , 2008, Applied optics.

[13]  M. Dadras,et al.  Microactuators based on ion-implanted dielectric electroactive polymer membranes (EAP) , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[14]  David L. Dickensheets,et al.  High Speed Focus Control MEMS Mirror With Controlled Air Damping for Vital Microscopy , 2013, Journal of Microelectromechanical Systems.

[15]  Ty Martinez,et al.  Non-mechanical zoom system , 2004, SPIE Remote Sensing.

[16]  Hans Zappe,et al.  Spherical aberration free liquid-filled tunable lens with variable thickness membrane. , 2015, Optics express.

[17]  Xiaohua Ma,et al.  Optical switching technology comparison: optical MEMS vs. other technologies , 2003, IEEE Commun. Mag..

[18]  Wei-Yao Hsu,et al.  Thin autofocus camera module by a large-stroke micromachined deformable mirror. , 2010, Optics express.

[19]  Stefan M. Weber,et al.  Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet , 2009 .

[20]  David L. Dickensheets,et al.  MOEMS deformable mirrors for focus control in vital microscopy , 2011 .

[21]  Umesh A. Korde Large-displacement Closed-loop Control of Variable Area Electrostatic Actuation for Membrane Reflectors , 2009 .

[22]  D. De Rossi,et al.  Bioinspired Tunable Lens with Muscle‐Like Electroactive Elastomers , 2011 .

[23]  Kyle W. Oliver,et al.  Stress engineering for free-standing SU-8 2002 thin film devices , 2012, Other Conferences.

[24]  H. Zappe,et al.  Tunable hyperchromatic microlens array for compact 2D spectrometry , 2015, 2015 20th Microoptics Conference (MOC).

[25]  Guo-Dung John Su,et al.  Miniature optical autofocus camera by micromachined fluoropolymer deformable mirror. , 2009, Optics express.

[26]  Martin J. Booth,et al.  Adaptive optics for microscopy, optical data storage, and micromachining , 2006, SPIE Optics + Photonics.

[27]  David L. Dickensheets,et al.  MEMS focus control and spherical aberration correction for multilayer optical discs , 2012, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[28]  Tyson N. Kim,et al.  Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane , 2007 .

[29]  Seung S. Lee,et al.  Focal tunable liquid lens integrated with an electromagnetic actuator , 2007 .

[30]  Qun Hao,et al.  Dynamic focus control of the Blu-ray optical pickup unit , 2008, Optical Systems Design.

[31]  Guo-Dung John Su,et al.  A low voltage deformable mirror using ionic-polymer metal composite , 2010, Optical Engineering + Applications.

[32]  D. Dickensheets,et al.  High speed, large deflection deformable mirrors for focus and spherical aberration control , 2002, IEEE/LEOS International Conference on Optical MEMs.

[33]  M. Lin,et al.  Design and fabrication of an electrostatically actuated microdeformable focusing mirror , 2011 .

[34]  Adrian Bradu,et al.  Correcting ocular aberrations with a high stroke deformable mirror , 2007, European Conference on Biomedical Optics.

[35]  David L. Dickensheets,et al.  Agile scanning using a MEMS focus control mirror in a commercial confocal microscope , 2014, Photonics West - Biomedical Optics.

[36]  G. Naletto,et al.  Innovative Membrane Deformable Mirrors , 2012 .

[37]  B. Hendriks,et al.  Electrowetting-Based Variable-Focus Lens for Miniature Systems , 2005 .

[38]  Sarah J. Lukes,et al.  Imaging performance of elliptical-boundary varifocal mirrors in active optical systems , 2015 .

[39]  Phillip A. Himmer,et al.  Pixel-by-pixel aberration correction for scanned-beam micro-optical instruments , 1999, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[40]  Andrew Waddie,et al.  Application of cooled spatial light modulator for high power nanosecond laser micromachining. , 2010, Optics express.

[41]  Robert C. Romeo,et al.  Active optical zoom for space-based imaging , 2006, SPIE Optics + Photonics.

[42]  Brett E. Bouma,et al.  Comprehensive volumetric confocal microscopy with adaptive focusing , 2011, Biomedical optics express.

[43]  B. Berge,et al.  Liquid lens technology: principle of electrowetting based lenses and applications to imaging , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[44]  David L. Dickensheets,et al.  SU-8 focus control mirrors released by XeF2 dry etch , 2011, MOEMS-MEMS.

[45]  S. Kuiper,et al.  Variable-focus liquid lens for miniature cameras , 2004 .

[46]  G. Vdovin,et al.  Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortions , 2001 .

[47]  Wei Zhao,et al.  Broadband and wide field of view foveated imaging system in space , 2008 .

[48]  R. Paxman,et al.  Focusing through dynamic scattering media. , 2012, Optics express.

[49]  D. Coburn,et al.  High resolution wavefront correction with photocontrolled deformable mirror. , 2012, Optics express.

[50]  Masahiro Yamada,et al.  A Novel Deformable Mirror for Spherical Aberration Compensation , 2009 .

[51]  Mau-Shiun Yeh,et al.  Miniaturized variable-focus lens fabrication using liquid filling technique , 2008 .

[52]  Paolo Villoresi,et al.  Ultrabroadband pulse shaping with a push-pull deformable mirror. , 2010, Optics express.

[53]  Stephane Fanget,et al.  Integrated deformable mirror on silicon for optical data storage , 2005, SPIE MOEMS-MEMS.