Towards the Prediction of Combustion Noise in a Gas Turbine Combustor: Isothermal Flow Case

In order to evaluate the direct and indirect contributions to the total combustion noise emission, a combustion chamber consisting of a swirl burner and an exit nozzle of Laval- shape, representing a gas turbine combustor, is investigated by means of experiments and large eddy simulation. Focused on the isothermal o w case rst and encouraged by a good overall agreement between the LES and the experimental data for the o w eld, the characterisation of the o w with respect to noise sources is performed. To analyse acoustic properties of the o w, time- and lengthscales are evaluated inside the combustor. Furthermore, the evidence for the existence of a precessing vortex core, typical for congurations with swirl, is revealed. Finally, the effect of the precessing vortex core on the o w inside the Laval-nozzle is discussed.

[1]  D. Lilly,et al.  A proposed modification of the Germano subgrid‐scale closure method , 1992 .

[2]  F. E. Marble,et al.  Acoustic disturbance from gas non-uniformities convected through a nozzle , 1977 .

[3]  H. Mongia,et al.  Large-Eddy Simulation of a Gas Turbine Combustor Flow , 1999 .

[4]  A. Hirschberg,et al.  An introduction to acoustics , 1992 .

[5]  W. P. Jones,et al.  Large Eddy simulation of a turbulent non-premixed flame , 2001 .

[6]  J. Riley,et al.  A subgrid model for equilibrium chemistry in turbulent flows , 1994 .

[7]  N. Syred,et al.  The Effect of the Precessing Vortex Core on Combustion in a Swirl Burner , 1997 .

[8]  P. Durbin A PERSPECTIVE ON RECENT DEVELOPMENTS IN RANS MODELING , 2002 .

[9]  James J. McGuirk,et al.  Large Eddy Simulation of Isothermal Confined Swirling Flow with Recirculation , 2002 .

[10]  Rhj Sellin,et al.  Engineering Turbulence - Modelling and experiments 3 , 1996 .

[11]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[12]  T. O’Doherty,et al.  Vortex breakdown: a review , 2001 .

[13]  Jassin Fritz Flammenrückschlag durch verbrennungsinduziertes Wirbelaufplatzen , 2003 .

[14]  M. Lesieur,et al.  New Trends in Large-Eddy Simulations of Turbulence , 1996 .

[15]  Andrew W. Cook,et al.  Subgrid-scale modeling for turbulent reacting flows , 1998 .

[16]  Parviz Moin,et al.  Erratum: ‘‘A dynamic subgrid‐scale eddy viscosity model’’ [Phys. Fluids A 3, 1760 (1991)] , 1991 .

[17]  Ann P. Dowling Acoustics of unstable flows , 1997 .

[18]  J. Janicka,et al.  Turbulent length scales in a swirling flame , 1996 .

[19]  Michael Schäfer,et al.  Improved Linear Interpolation Practice for Finite-Volume Schemes on Complex Grids , 2002 .

[20]  Jos Derksen,et al.  Simulation of vortex core precession in a reverse‐flow cyclone , 2000 .

[21]  H. Pitsch,et al.  Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D) , 2000 .

[22]  Johannes Janicka,et al.  Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES , 2005 .

[23]  J. Janicka,et al.  Large-Eddy Simulation of a Turbulent Hydrogen Diffusion Flame , 1999, Proceeding of First Symposium on Turbulence and Shear Flow Phenomena.

[24]  Denis Veynante,et al.  LES of Chemical and Acoustic Forcing of a Premixed Dump Combustor , 2000 .

[25]  A. Dreizler,et al.  Fluid Dynamical Analysis of Atmospheric Reacting and Isothermal Swirling Flows , 2005 .

[26]  Johannes Janicka,et al.  Assessment of Unsteady RANS in Predicting Swirl Flow Instability Based on LES and Experiments , 2004 .

[27]  Franz Durst,et al.  a Parallel Block-Structured Multigrid Method for the Prediction of Incompressible Flows , 1996 .

[28]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[29]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[30]  Warren C. Strahle,et al.  Separation of Hydrodynamic, Entropy, and Combustion Noise in a Gas Turbine Combustor , 1978 .

[31]  Johannes Janicka,et al.  Large Eddy Simulation of Turbulent Combustion Systems , 2005 .