Bayesian Network Learning with Parameter Constraints
暂无分享,去创建一个
Tom M. Mitchell | R. Bharat Rao | Radu Stefan Niculescu | R. B. Rao | Tom Michael Mitchell | R. Niculescu
[1] Thomas P. Minka,et al. The Dirichlet-tree distribution , 2006 .
[2] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[3] David Heckerman,et al. A Tutorial on Learning with Bayesian Networks , 1999, Innovations in Bayesian Networks.
[4] John D. Lafferty,et al. A study of smoothing methods for language models applied to Ad Hoc information retrieval , 2001, SIGIR '01.
[5] Indrayana Rustandi,et al. Learning to Identify Overlapping and Hidden Cognitive Processes from fMRI Data , 2005 .
[6] Tom M. Mitchell,et al. Learning to Decode Cognitive States from Brain Images , 2004, Machine Learning.
[7] Peter Hooper. Dependent Dirichlet Priors and Optimal Linear Estimators for Belief Net Parameters , 2004, UAI.
[8] Tom M. Mitchell,et al. Exploiting parameter domain knowledge for learning in bayesian networks , 2005 .
[9] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .
[10] R. Bharat Rao,et al. Clinical and financial outcomes analysis with existing hospital patient records , 2003, KDD '03.
[11] Michael C. Horsch,et al. Dynamic Bayesian networks , 1990 .
[12] Tom M. Mitchell,et al. Exploiting Parameter Related Domain Knowledge for Learning in Graphical Models , 2005, SDM.
[13] Lise Getoor,et al. Learning Probabilistic Relational Models , 1999, IJCAI.
[14] A M Dale,et al. Optimal experimental design for event‐related fMRI , 1999, Human brain mapping.
[15] David Heckerman,et al. Knowledge Representation and Inference in Similarity Networks and Bayesian Multinets , 1996, Artif. Intell..
[16] D. Geiger,et al. A characterization of the Dirichlet distribution through global and local parameter independence , 1997 .
[17] Lawrence R. Rabiner,et al. A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.
[18] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[19] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[20] William F. Eddy,et al. Time Course of fMRI-Activation in Language and Spatial Networks during Sentence Comprehension , 1999, NeuroImage.
[21] J. L. Roux. An Introduction to the Kalman Filter , 2003 .
[22] Stuart J. Russell,et al. Dynamic bayesian networks: representation, inference and learning , 2002 .
[23] Craig Boutilier,et al. Context-Specific Independence in Bayesian Networks , 1996, UAI.
[24] Joshua B. Tenenbaum,et al. Separating Style and Content with Bilinear Models , 2000, Neural Computation.
[25] Nir Friedman,et al. Learning Module Networks , 2002, J. Mach. Learn. Res..
[26] Pedro Larrañaga,et al. Learning Recursive Bayesian Multinets for Data Clustering by Means of Constructive Induction , 2002, Machine Learning.
[27] Jeff A. Bilmes,et al. Dynamic Bayesian Multinets , 2000, UAI.
[28] Avi Pfeffer,et al. Object-Oriented Bayesian Networks , 1997, UAI.
[29] Indrayana Rustandi,et al. Hidden process models , 2006, ICML.