Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis

In translation, elongation factor Tu (EF-Tu) molecules deliver aminoacyl-tRNAs to the mRNA-programmed ribosome. The GTPase activity of EF-Tu is triggered by ribosome-induced conformational changes of the factor that play a pivotal role in the selection of the cognate aminoacyl-tRNAs. We present a 6.7-Å cryo-electron microscopy map of the aminoacyl-tRNA·EF-Tu·GDP·kirromycin-bound Escherichia coli ribosome, together with an atomic model of the complex obtained through molecular dynamics flexible fitting. The model reveals the conformational changes in the conserved GTPase switch regions of EF-Tu that trigger hydrolysis of GTP, along with key interactions, including those between the sarcin-ricin loop and the P loop of EF-Tu, and between the effector loop of EF-Tu and a conserved region of the 16S rRNA. Our data suggest that GTP hydrolysis on EF-Tu is controlled through a hydrophobic gate mechanism.

[1]  Jürgen Schlitter,et al.  Targeted Molecular Dynamics Simulation of Conformational Change-Application to the T ↔ R Transition in Insulin , 1993 .

[2]  J. Eccleston,et al.  Characterization of the GTPase reaction of elongation factor Tu. Determination of the stereochemical course in the presence of antibiotic X5108. , 1982, The Journal of biological chemistry.

[3]  Zaida Luthey-Schulten,et al.  Dynamics of Recognition between tRNA and elongation factor Tu. , 2008, Journal of molecular biology.

[4]  I. Wool,et al.  The ribosome-in-pieces: binding of elongation factor EF-G to oligoribonucleotides that mimic the sarcin/ricin and thiostrepton domains of 23S ribosomal RNA. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[5]  I. Wool,et al.  A pathway for the transmission of allosteric signals in the ribosome through a network of RNA tertiary interactions. , 2006, Journal of molecular biology.

[6]  M. Ehrenberg,et al.  An A to U transversion at position 1067 of 23 S rRNA from Escherichia coli impairs EF-Tu and EF-G function. , 1997, Journal of molecular biology.

[7]  Joachim Frank,et al.  Visualization of the eEF2-80S ribosome transition-state complex by cryo-electron microscopy. , 2008, Journal of molecular biology.

[8]  J. Frank,et al.  Functional conformations of the L11-ribosomal RNA complex revealed by correlative analysis of cryo-EM and molecular dynamics simulations. , 2006, RNA.

[9]  Wolfgang Wintermeyer,et al.  GTPase activation of elongation factors Tu and G on the ribosome. , 2002, Biochemistry.

[10]  Joachim Frank,et al.  Cryo‐EM reveals an active role for aminoacyl‐tRNA in the accommodation process , 2002, The EMBO journal.

[11]  Joachim Frank,et al.  Preparation of macromolecular complexes for cryo-electron microscopy , 2007, Nature Protocols.

[12]  M. Yoder,et al.  WHOLE, UNMODIFIED, EF-TU(ELONGATION FACTOR TU). , 1999 .

[13]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[14]  R. Hilgenfeld,et al.  Crystal structure of active elongation factor Tu reveals major domain rearrangements , 1993, Nature.

[15]  Jamie H. D. Cate,et al.  Structural basis for mRNA and tRNA positioning on the ribosome , 2006, Proceedings of the National Academy of Sciences.

[16]  S Thirup,et al.  Crystal Structure of the Ternary Complex of Phe-tRNAPhe, EF-Tu, and a GTP Analog , 1995, Science.

[17]  Leonardo G. Trabuco,et al.  Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. , 2008, Structure.

[18]  J. Puglisi,et al.  tRNA selection and kinetic proofreading in translation , 2004, Nature Structural &Molecular Biology.

[19]  The Importance of P-loop and Domain Movements in EF-Tu for Guanine Nucleotide Exchange* , 2006, Journal of Biological Chemistry.

[20]  M. Rodnina,et al.  The Importance of Structural Transitions of the Switch II Region for the Functions of Elongation Factor Tu on the Ribosome* , 2001, The Journal of Biological Chemistry.

[21]  R. Hilgenfeld,et al.  Conformational Change of Elongation Factor Tu (EF-Tu) Induced by Antibiotic Binding , 2001, The Journal of Biological Chemistry.

[22]  Scott M Stagg,et al.  Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy , 2003, Nature Structural Biology.

[23]  V. Ramakrishnan,et al.  First published online as a Review in Advance on February 25, 2005 STRUCTURAL INSIGHTS INTO TRANSLATIONAL , 2022 .

[24]  S. Sprang,et al.  Structure of the GDP–Pi complex of Gly203→Ala Giα1: a mimic of the ternary product complex of Gα-catalyzed GTP hydrolysis , 1996 .

[25]  S Thirup,et al.  Helix unwinding in the effector region of elongation factor EF-Tu-GDP. , 1996, Structure.

[26]  J. Nyborg,et al.  The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. , 1993, Structure.

[27]  I. Vetter,et al.  The Guanine Nucleotide-Binding Switch in Three Dimensions , 2001, Science.

[28]  S. Limmer,et al.  Nucleotide binding and GTP hydrolysis by elongation factor Tu from Thermus thermophilus as monitored by proton NMR. , 1992, Biochemistry.

[29]  M. Rodnina,et al.  Interaction of helix D of elongation factor Tu with helices 4 and 5 of protein L7/12 on the ribosome. , 2004, Journal of molecular biology.

[30]  M. Sprinzl,et al.  Limited proteolysis and amino acid replacements in the effector region of Thermus thermophilus elongation factor Tu. , 1996, European journal of biochemistry.

[31]  O. Uhlenbeck,et al.  Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. , 2000, Biochemistry.

[32]  Rolf Hilgenfeld,et al.  An α to β conformational switch in EF-Tu , 1996 .

[33]  M. Rodnina,et al.  Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome. , 2003, Journal of molecular biology.

[34]  Joachim Frank,et al.  Exploration of parameters in cryo-EM leading to an improved density map of the E. coli ribosome. , 2008, Journal of structural biology.

[35]  M. Heel,et al.  Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex , 2002, Nature Structural Biology.