In the Journal of Microelectromechanical Systems (see vol. 11, pp. 574-583, Oct. 2002), we presented an actuation scheme for toggling a bistable MEMS, a buckled beam, from one stable state to the other using radiation pressure of light. The experiments revealed some anomalous behavior of the beam. While long duration laser pulses at a power level slightly above the toggle threshold reliably toggled the beam every time, short duration pulses of the same power toggled the beam only about two-thirds of the time. In addition, when excessively high power levels (far above the toggle threshold) were used, the beam would not reliably toggle regardless of the pulse duration. This paper resolves the anomaly. It presents a nonlinear dynamical analysis of the bistable beam device which explains the anomaly as follows: a slightly higher than threshold force, applied for sufficient time, toggles the beam. If the force duration is longer than the time of decay of the oscillation of the beam about the toggled state, then the beam remains in that state after the force is removed. Otherwise, the beam may return to the original state. On the other hand, if the beam is toggled by a force far above the threshold, then after removal of the force, the beam may oscillate spanning both the states until the motion decays and the beam settles down to one of the states, not necessarily the toggled state, which may appear to be an anomalous behavior. The theoretical model is validated by a series of toggling experiments.
[1]
L. Howell,et al.
On-chip actuation of an in-plane compliant bistable micromechanism
,
2002
.
[2]
B. Lazan.
Damping of materials and members in structural mechanics
,
1968
.
[3]
M. Capanu,et al.
Design, fabrication, and testing of a bistable electromagnetically actuated microvalve
,
2000,
Journal of Microelectromechanical Systems.
[4]
L. Howell,et al.
A self-retracting fully compliant bistable micromechanism
,
2003
.
[5]
Joonwon Kim,et al.
Electrostatic actuation of microscale liquid-metal droplets
,
2002
.
[6]
T. Saif,et al.
Optical actuation of a bistable MEMS
,
2002
.
[7]
S. Hoerner.
Fluid Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance
,
1965
.
[8]
R. Clough,et al.
Dynamics Of Structures
,
1975
.
[9]
M. Saif.
On a tunable bistable MEMS-theory and experiment
,
2000,
Journal of Microelectromechanical Systems.
[10]
Weileun Fang,et al.
Post buckling of micromachined beams
,
1994
.