Mixed-Metal MOFs: Unique Opportunities in Metal-organic Framework Functionality and Design.

Mixed-metal metal organic frameworks (MM-MOFs) can be considered those MOFs having two metals anywhere in the structure. The present review summarizes the various strategies reported for preparation of MM-MOFs and some of their applications in adsorption, gas separation and catalysis. It is shown that compared to homometallic MOFs, MM-MOFs bring about the opportunity to take advantage of the complexity and the synergism derived from the presence of different metal ions in the structure of MOFs. This is reflected in a superior performance and even stability of MM-MOFs respect to related single metal MOFs. Emphasis is made on the use of MM-MOFs as catalysts for tandem reaction.

[1]  H. Hamadi,et al.  Tandem magnetization and post-synthetic metal ion exchange of metal-organic framework: Synthesis, characterization and catalytic study , 2019, Applied Organometallic Chemistry.

[2]  M. Khajeh,et al.  Iron species supported on a mesoporous zirconium metal-organic framework for visible light driven synthesis of quinazolin-4(3H)-ones through one-pot three-step tandem reaction. , 2019, Journal of colloid and interface science.

[3]  Abdullah M. Asiri,et al.  Formation of C–C and C–Heteroatom Bonds by C–H Activation by Metal Organic Frameworks as Catalysts or Supports , 2019, ACS Catalysis.

[4]  Zhaohui Li,et al.  Catalysis and photocatalysis by metal organic frameworks. , 2018, Chemical Society reviews.

[5]  Liang Feng,et al.  Recyclable and Reusable Heteroleptic Nickel Catalyst Immobilized on Metal-Organic Framework for Suzuki-Miyaura Coupling. , 2018, ACS applied materials & interfaces.

[6]  H. García,et al.  Exploring the catalytic performances of a series of bimetallic MIL-100(Fe-Ni) MOFs , 2018, Acta Crystallographica Section A Foundations and Advances.

[7]  Zhaohui Li,et al.  Small‐Sized Bimetallic CuPd Nanoclusters Encapsulated Inside Cavity of NH 2 ‐UiO‐66(Zr) with Superior Performance for Light‐Induced Suzuki Coupling Reaction , 2018, Small Methods.

[8]  M. S. Rahmanifar,et al.  A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material , 2018, Electrochimica Acta.

[9]  Z. Li,et al.  PdAu@MIL-100(Fe) cooperatively catalyze tandem reactions between amines and alcohols for efficient N-alkyl amines syntheses under visible light , 2018 .

[10]  Christina T. Lollar,et al.  Retrosynthesis of multi-component metal−organic frameworks , 2018, Nature Communications.

[11]  Christopher H. Hendon,et al.  Revisiting the incorporation of Ti(IV) in UiO-type metal-organic frameworks: metal exchange versus grafting and their implications on photocatalysis , 2017 .

[12]  A. Morsali,et al.  A MoO3–Metal–Organic Framework Composite as a Simultaneous Photocatalyst and Catalyst in the PODS Process of Light Oil , 2017 .

[13]  A. Morsali,et al.  Stimuli-Responsive Metal-Organic Framework (MOF) with Chemo-Switchable Properties for Colorimetric Detection of CHCl3. , 2017, Chemistry.

[14]  Qiang Xu,et al.  Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. , 2017, Chemical Society reviews.

[15]  A. Morsali,et al.  Porosity and dye adsorption enhancement by ultrasonic synthesized Cd(II) based metal-organic framework. , 2017, Ultrasonics sonochemistry.

[16]  A. Morsali,et al.  Ultrasonic assisted synthesis of a tetrazine functionalized MOF and its application in colorimetric detection of phenylhydrazine. , 2017, Ultrasonics sonochemistry.

[17]  A. Morsali,et al.  High organic sulfur removal performance of a cobalt based metal-organic framework. , 2017, Journal of hazardous materials.

[18]  Linbing Sun,et al.  Metal-Organic Frameworks for Heterogeneous Basic Catalysis. , 2017, Chemical reviews.

[19]  Abdullah M. Asiri,et al.  Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis , 2017 .

[20]  B. Ferrer,et al.  Ti as Mediator in the Photoinduced Electron Transfer of Mixed-Metal NH2–UiO-66(Zr/Ti): Transient Absorption Spectroscopy Study and Application in Photovoltaic Cell , 2017 .

[21]  Y. Yamini,et al.  Magnetic metal-organic frameworks for the extraction of trace amounts of heavy metal ions prior to their determination by ICP-AES , 2017, Microchimica Acta.

[22]  N. Stock,et al.  Tuning the stability of bimetallic Ce(iv)/Zr(iv)-based MOFs with UiO-66 and MOF-808 structures. , 2017, Dalton transactions.

[23]  J. Hupp,et al.  Improvement of Methane-Framework Interaction by Controlling Pore Size and Functionality of Pillared MOFs. , 2017, Inorganic chemistry.

[24]  Qi Liu,et al.  Deciphering the Spatial Arrangement of Metals and Correlation to Reactivity in Multivariate Metal-Organic Frameworks. , 2016, Journal of the American Chemical Society.

[25]  Z. Li,et al.  Coupling MOF-based photocatalysis with Pd catalysis over Pd@MIL-100(Fe) for efficient N-alkylation of amines with alcohols under visible light , 2016 .

[26]  Z. Li,et al.  Double-Solvent Method to Pd Nanoclusters Encapsulated inside the Cavity of NH2-Uio-66(Zr) for Efficient Visible-Light-Promoted Suzuki Coupling Reaction , 2016 .

[27]  Abdullah M. Asiri,et al.  Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts , 2016 .

[28]  A. Morsali,et al.  High photodegradation efficiency of phenol by mixed-metal–organic frameworks , 2016 .

[29]  T. N. Lo,et al.  Mixed-Metal Zeolitic Imidazolate Frameworks and their Selective Capture of Wet Carbon Dioxide over Methane. , 2016, Inorganic chemistry.

[30]  Y. Yamini,et al.  Application of a Zn(II) based metal–organic framework as an efficient solid-phase extraction sorbent for preconcentration of plasticizer compounds , 2016 .

[31]  A. Morsali,et al.  High efficiency of mechanosynthesized Zn-based metal–organic frameworks in photodegradation of congo red under UV and visible light , 2016 .

[32]  A. J. Blake,et al.  Enhancement of CO2 Adsorption and Catalytic Properties by Fe-Doping of [Ga2(OH)2(L)] (H4L = Biphenyl-3,3′,5,5′-tetracarboxylic Acid), MFM-300(Ga2) , 2016, Inorganic chemistry.

[33]  P. Fulvio,et al.  Hierarchical Metal-Organic Framework Hybrids: Perturbation-Assisted Nanofusion Synthesis. , 2015, Accounts of chemical research.

[34]  W. P. Mounfield,et al.  Tuning the Kinetic Water Stability and Adsorption Interactions of Mg-MOF-74 by Partial Substitution with Co or Ni , 2015 .

[35]  Qiaowei Li,et al.  Heterogeneity within a Mesoporous Metal-Organic Framework with Three Distinct Metal-Containing Building Units. , 2015, Journal of the American Chemical Society.

[36]  Z. Li,et al.  Mixed-Metal Strategy on Metal-Organic Frameworks (MOFs) for Functionalities Expansion: Co Substitution Induces Aerobic Oxidation of Cyclohexene over Inactive Ni-MOF-74. , 2015, Inorganic chemistry.

[37]  A. Morsali,et al.  Applications of ultrasound to the synthesis of nanoscale metal–organic coordination polymers , 2015 .

[38]  Chunchao Hou,et al.  Incorporation of a [Ru(dcbpy)(bpy)2]2+ photosensitizer and a Pt(dcbpy)Cl2 catalyst into metal–organic frameworks for photocatalytic hydrogen evolution from aqueous solution , 2015 .

[39]  E. Gutiérrez‐Puebla,et al.  Tunable catalytic activity of solid solution metal-organic frameworks in one-pot multicomponent reactions. , 2015, Journal of the American Chemical Society.

[40]  U. Müller,et al.  “Heterogenität innerhalb von Ordnung” in Metall‐organischen Gerüsten , 2015 .

[41]  H. Furukawa,et al.  "Heterogeneity within order" in metal-organic frameworks. , 2015, Angewandte Chemie.

[42]  J. Long,et al.  Single-crystal-to-single-crystal metalation of a metal-organic framework: a route toward structurally well-defined catalysts. , 2015, Inorganic chemistry.

[43]  Bin Zhao,et al.  Heterometal-organic frameworks as highly sensitive and highly selective luminescent probes to detect I⁻ ions in aqueous solutions. , 2015, Chemical communications.

[44]  Francis X. Greene,et al.  Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation. , 2015, Journal of the American Chemical Society.

[45]  Daliang Zhang,et al.  Porous ZnCo2O4 nanoparticles derived from a new mixed-metal organic framework for supercapacitors , 2015 .

[46]  P. Feng,et al.  New heterometallic zirconium metalloporphyrin frameworks and their heteroatom-activated high-surface-area carbon derivatives. , 2015, Journal of the American Chemical Society.

[47]  Z. Li,et al.  Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal-organic frameworks (MOFs). , 2015, Chemical communications.

[48]  A. Hill,et al.  Post-synthetic Ti Exchanged UiO-66 Metal-Organic Frameworks that Deliver Exceptional Gas Permeability in Mixed Matrix Membranes , 2015, Scientific Reports.

[49]  S. Ashbrook,et al.  Mixed-metal MIL-100(Sc,M) (M=Al, Cr, Fe) for Lewis acid catalysis and tandem C-C bond formation and alcohol oxidation. , 2014, Chemistry.

[50]  L. Weng,et al.  Ordered vacancies and their chemistry in metal-organic frameworks. , 2014, Journal of the American Chemical Society.

[51]  Yingwei Li,et al.  Carbonylative Sonogashira coupling of terminal alkynes with aryl iodides under atmospheric pressure of CO using Pd(II)@MOF as the catalyst , 2014 .

[52]  Rui Qiao,et al.  New Metal–Organic Frameworks Constructed from the 4-Imidazole-Carboxylate Ligand: Structural Diversities, Luminescence, and Gas Adsorption Properties , 2014 .

[53]  Omar K Farha,et al.  Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement. , 2014, Chemical Society reviews.

[54]  S. Kaskel,et al.  Flexible metal-organic frameworks. , 2014, Chemical Society reviews.

[55]  Yingwei Li,et al.  A molecular Pd(II) complex incorporated into a MOF as a highly active single-site heterogeneous catalyst for C–Cl bond activation , 2014 .

[56]  Kyung Min Choi,et al.  Supercapacitors of nanocrystalline metal-organic frameworks. , 2014, ACS nano.

[57]  H. Furukawa,et al.  Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals. , 2014, Inorganic chemistry.

[58]  Z. Su,et al.  A microporous anionic metal-organic framework for sensing luminescence of lanthanide(III) ions and selective absorption of dyes by ionic exchange. , 2014, Chemistry.

[59]  Daniel Maspoch,et al.  Selective CO2 Capture in Metal–Organic Frameworks with Azine-Functionalized Pores Generated by Mechanosynthesis , 2014 .

[60]  Seth M. Cohen,et al.  A robust, catalytic metal-organic framework with open 2,2'-bipyridine sites. , 2014, Chemical communications.

[61]  Yuanjing Cui,et al.  A highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer. , 2013, Journal of the American Chemical Society.

[62]  A. Morsali,et al.  Morphological study and potential applications of nano metal–organic coordination polymers , 2013 .

[63]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[64]  Michel Waroquier,et al.  Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). , 2013, Journal of the American Chemical Society.

[65]  J. Greneche,et al.  Isomorphous substitution in a flexible metal-organic framework: mixed-metal, mixed-valent MIL-53 type materials. , 2013, Inorganic chemistry.

[66]  Huanfeng Jiang,et al.  A chiral mixed metal-organic framework based on a Ni(saldpen) metalloligand: synthesis, characterization and catalytic performances. , 2013, Dalton transactions.

[67]  Ting-Hai Yang,et al.  Mixed Cu(II)–Bi(III) metal organic framework with a 2D inorganic subnetwork and its catalytic activity , 2013 .

[68]  Omar K. Farha,et al.  Transmetalation: routes to metal exchange within metal–organic frameworks , 2013 .

[69]  M. Hill,et al.  A route to drastic increase of CO2 uptake in Zr metal organic framework UiO-66. , 2013, Chemical communications.

[70]  Amy J. Cairns,et al.  The asc trinodal platform: two-step assembly of triangular, tetrahedral, and trigonal-prismatic molecular building blocks. , 2013, Angewandte Chemie.

[71]  T. Do,et al.  Synthesis and engineering porosity of a mixed metal Fe2Ni MIL-88B metal-organic framework. , 2013, Dalton transactions.

[72]  Timothy R. Cook,et al.  Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. , 2013, Chemical reviews.

[73]  A. Morsali,et al.  Applications of metal–organic coordination polymers as precursors for preparation of nano-materials , 2012 .

[74]  Seth M. Cohen,et al.  Postsynthetic ligand and cation exchange in robust metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[75]  F. Kapteijn,et al.  Selective gas and vapor sorption and magnetic sensing by an isoreticular mixed-metal-organic framework. , 2012, Journal of the American Chemical Society.

[76]  P. Falcaro,et al.  Doping light emitters into metal-organic frameworks. , 2012, Angewandte Chemie.

[77]  Paolo Falcaro,et al.  Dotierung von Metall‐organischen Gerüststrukturen mit Lichtemittern , 2012 .

[78]  Myoung Soo Lah,et al.  Post-Synthetic Modifications of Framework Metal Ions in Isostructural Metal–Organic Frameworks: Core–Shell Heterostructures via Selective Transmetalations , 2012 .

[79]  H. García,et al.  Catalysis by metal nanoparticles embedded on metal-organic frameworks. , 2012, Chemical Society reviews.

[80]  C. Roth,et al.  An isomorphous series of cubic, copper-based triazolyl isophthalate MOFs: linker substitution and adsorption properties. , 2012, Inorganic chemistry.

[81]  R. Krishna,et al.  Interplay of metalloligand and organic ligand to tune micropores within isostructural mixed-metal organic frameworks (M'MOFs) for their highly selective separation of chiral and achiral small molecules. , 2012, Journal of the American Chemical Society.

[82]  C. Su,et al.  Dual-Emission from a Single-Phase Eu–Ag Metal–Organic Framework: An Alternative Way to Get White-Light Phosphor , 2012 .

[83]  K. Thomas,et al.  Triple framework interpenetration and immobilization of open metal sites within a microporous mixed metal-organic framework for highly selective gas adsorption. , 2012, Inorganic chemistry.

[84]  Cheng Wang,et al.  Pt nanoparticles@photoactive metal-organic frameworks: efficient hydrogen evolution via synergistic photoexcitation and electron injection. , 2012, Journal of the American Chemical Society.

[85]  R. Haldar,et al.  Antiferromagnetic porous metal-organic framework containing mixed-valence [Mn(II)4Mn(III)2(μ4-O)2]10+ units with catecholase activity and selective gas adsorption. , 2012, Inorganic chemistry.

[86]  Zhiyong Guo,et al.  A luminescent mixed-lanthanide metal-organic framework thermometer. , 2012, Journal of the American Chemical Society.

[87]  Mark A. Rodriguez,et al.  Intrinsic broad-band white-light emission by a tuned, corrugated metal-organic framework. , 2012, Journal of the American Chemical Society.

[88]  Shyam Biswas,et al.  Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. , 2012, Chemical reviews.

[89]  D. Su,et al.  Chemical Vapor Deposition of Pd(C3H5)(C5H5) to Synthesize Pd@MOF-5 Catalysts for Suzuki Coupling Reaction , 2012, Catalysis Letters.

[90]  M. Eddaoudi,et al.  Network diversity through decoration of trigonal-prismatic nodes: two-step crystal engineering of cationic metal-organic materials. , 2011, Angewandte Chemie.

[91]  Madhab C. Das,et al.  Funktionelle Gemischtmetall‐organische Gerüste mit Metalloliganden , 2011 .

[92]  Zhangjing Zhang,et al.  Functional mixed metal-organic frameworks with metalloligands. , 2011, Angewandte Chemie.

[93]  Tianfu Liu,et al.  Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki-Miyaura cross-coupling reaction , 2011 .

[94]  Abraham M. Shultz,et al.  Post-synthesis modification of a metal-organic framework to form metallosalen-containing MOF materials. , 2011, Journal of the American Chemical Society.

[95]  Zhigang Xie,et al.  Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. , 2011, Journal of the American Chemical Society.

[96]  Chao Zou,et al.  A Sn(IV)-porphyrin-based metal-organic framework for the selective photo-oxygenation of phenol and sulfides. , 2011, Inorganic chemistry.

[97]  S. Dehnen,et al.  New three-dimensional metal-organic framework with heterometallic [Fe-Ag] building units: synthesis, crystal structure, and functional studies. , 2011, Inorganic chemistry.

[98]  Zhangjing Zhang,et al.  Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. , 2011, Nature communications.

[99]  Wenbin Lin,et al.  Single-crystal to single-crystal cross-linking of an interpenetrating chiral metal-organic framework and implications in asymmetric catalysis. , 2010, Angewandte Chemie.

[100]  S. James,et al.  Mechanochemical synthesis of homo- and hetero-rare-earth(III) metal–organic frameworks by ball milling , 2010 .

[101]  Cheng Wang,et al.  Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: tuning catalytic activity by controlling framework catenation and varying open channel sizes. , 2010, Journal of the American Chemical Society.

[102]  S. Qiu,et al.  Coordination Modulation Induced Synthesis of Nanoscale Eu1‐xTbx‐Metal‐Organic Frameworks for Luminescent Thin Films , 2010, Advanced materials.

[103]  Christian J. Doonan,et al.  Metal insertion in a microporous metal-organic framework lined with 2,2'-bipyridine. , 2010, Journal of the American Chemical Society.

[104]  Brian P. Mehl,et al.  Energy transfer dynamics in metal-organic frameworks. , 2010, Journal of the American Chemical Society.

[105]  A. Torrisi,et al.  Reduction of a metal-organic framework by an organometallic complex: magnetic properties and structure of the inclusion compound [(eta5-C5H5)2Co](0.5)@MIL-47(V). , 2010, Angewandte Chemie.

[106]  Roland A. Fischer,et al.  Reduktion eines Metall‐organischen Gerüsts mit einem Organometallkomplex: magnetische Eigenschaften und Struktur der Einschlussverbindung [(η5‐C5H5)2Co]0.5@MIL‐47(V) , 2010 .

[107]  S. Biju,et al.  Synthesis, Structure and Optical Studies of a Family of Three‐Dimensional Rare‐Earth Aminoisophthalates [M(μ2‐OH)(C8H5NO4)] (M = Y3+, La3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Dy3+, and Er3+) , 2010 .

[108]  A. Cheetham,et al.  Anionic Metal–Organic Frameworks of Bismuth Benzenedicarboxylates: Synthesis, Structure and Ligand‐Sensitized Photoluminescence , 2010 .

[109]  G. Tendeloo,et al.  Metals@MOFs – Loading MOFs with Metal Nanoparticles for Hybrid Functions , 2010 .

[110]  Huanfeng Jiang,et al.  A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. , 2010, Angewandte Chemie.

[111]  G. Qian,et al.  Metal-organic frameworks with functional pores for recognition of small molecules. , 2010, Accounts of chemical research.

[112]  J. Menéndez,et al.  Cerium(IV) ammonium nitrate as a catalyst in organic synthesis. , 2010, Chemical reviews.

[113]  J. Botas,et al.  Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[114]  Zhigang Xie,et al.  Porous phosphorescent coordination polymers for oxygen sensing. , 2010, Journal of the American Chemical Society.

[115]  Wei‐Yin Sun,et al.  Synthesis and Characterization of 3d-3d Homo- and Heterometallic Coordination Polymers with Mixed Ligands , 2009 .

[116]  David Farrusseng,et al.  Metall‐organische Gerüste für die Katalyse , 2009 .

[117]  C. Pinel,et al.  Metal-organic frameworks: opportunities for catalysis. , 2009, Angewandte Chemie.

[118]  M. Zeller,et al.  Reversible uptake of HgCl2 in a porous coordination polymer based on the dual functions of carboxylate and thioether. , 2009, Chemical communications.

[119]  A. J. Blake,et al.  Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal–organic framework , 2009, Nature Chemistry.

[120]  S. Kitagawa,et al.  A porous coordination polymer with accessible metal sites and its complementary coordination action. , 2009, Chemistry.

[121]  T. Trindade,et al.  Three-Dimensional Lanthanide−Organic Frameworks Based on Di-, Tetra-, and Hexameric Clusters , 2009 .

[122]  Qun Yu,et al.  Tuning the framework topologies of Co(II)-doped Zn(II)-tetrazole-benzoate coordination polymers by ligand modifications: structures and spectral studies. , 2009, Inorganic chemistry.

[123]  Abraham M. Shultz,et al.  A catalytically active, permanently microporous MOF with metalloporphyrin struts. , 2009, Journal of the American Chemical Society.

[124]  Hyunuk Kim,et al.  Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[125]  Keiji Nakagawa,et al.  Heterogeneously hybridized porous coordination polymer crystals: fabrication of heterometallic core-shell single crystals with an in-plane rotational epitaxial relationship. , 2009, Angewandte Chemie.

[126]  S. Ng,,et al.  Spin-frustrated complex, [Fe(II)Fe(III)(trans-1,4-cyclohexanedicarboxylate)1.5]infinity: interplay between single-chain magnetic behavior and magnetic ordering. , 2009, Inorganic chemistry.

[127]  O. Lebedev,et al.  Gas-phase loading of [Zn4O(btb)2] (MOF-177) with organometallic CVD-precursors: inclusion compounds of the type [LnM]a@MOF-177 and the formation of Cu and Pd nanoparticles inside MOF-177 , 2008 .

[128]  L. Long,et al.  Influence of reaction conditions on the channel shape of 3d-4f heterometallic metal–organic framework , 2008 .

[129]  A. Matzger,et al.  Selective metal substitution for the preparation of heterobimetallic microporous coordination polymers. , 2008, Inorganic chemistry.

[130]  S. Ng,,et al.  Mixed-valence Cu(II)Cu(I)15I17 cluster builds up a 3D metal-organic framework with paramagnetic and thermochromic characteristics. , 2008, Inorganic chemistry.

[131]  Jun Lin,et al.  Enhanced Photocatalytic Degradation of RhB Driven by Visible Light-Induced MMCT of Ti(IV)−O−Fe(II) Formed in Fe-Doped SrTiO3 , 2008 .

[132]  T. Trindade,et al.  Photoluminescent 3D Lanthanide−Organic Frameworks with 2,5-Pyridinedicarboxylic and 1,4-Phenylenediacetic Acids , 2008 .

[133]  Banglin Chen,et al.  A nanoporous Ag-Fe mixed-metal-organic framework exhibiting single-crystal-to-single-crystal transformations upon guest exchange. , 2008, Inorganic chemistry.

[134]  Kunlun Hong,et al.  Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material. , 2008, Journal of the American Chemical Society.

[135]  Seth M. Cohen,et al.  Rare examples of transition-metal-main-group metal heterometallic metal-organic frameworks from gallium and indium dipyrrinato complexes and silver salts: synthesis and framework variability. , 2007, Inorganic chemistry.

[136]  Yan Liu,et al.  Cation-dependent nonlinear optical behavior in an octupolar 3D anionic metal-organic open framework. , 2007, Angewandte Chemie.

[137]  J. Long,et al.  High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal-organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2. , 2007, Journal of the American Chemical Society.

[138]  Z. Su,et al.  Mixed-valence iron(II, III) trimesates with open frameworks modulated by solvents. , 2007, Inorganic chemistry.

[139]  A. Cheetham,et al.  Effect of mixing of metal cations on the topology of metal oxide networks. , 2007, Angewandte Chemie.

[140]  G. Shimizu,et al.  Series of Lanthanide-Alkali Metal-Organic Frameworks Exhibiting Luminescence and Permanent Microporosity , 2007 .

[141]  A. Okamoto,et al.  Design of all-inorganic molecular-based photocatalysts sensitive to visible light: Ti(IV)-O-Ce(III) bimetallic assemblies on mesoporous silica. , 2007, Journal of the American Chemical Society.

[142]  J. Tarascon,et al.  Mixed-valence li/fe-based metal-organic frameworks with both reversible redox and sorption properties. , 2007, Angewandte Chemie.

[143]  C. Cahill,et al.  Exploring lanthanide luminescence in metal-organic frameworks: synthesis, structure, and guest-sensitized luminescence of a mixed europium/terbium-adipate framework and a terbium-adipate framework. , 2007, Inorganic chemistry.

[144]  Xiao‐Ming Chen,et al.  Unprecedented (3,9)-connected (42.6)3(46.621.89) net constructed by trinuclear mixed-valence cobalt clusters , 2007 .

[145]  Jaheon Kim,et al.  A porous mixed-valent iron MOF exhibiting the acs net: Synthesis, characterization and sorption behavior of Fe3O(F4BDC)3(H2O)3·(DMF)3.5 , 2007 .

[146]  A. J. Blake,et al.  Twelve-connected porous metal-organic frameworks with high H(2) adsorption. , 2007, Chemical communications.

[147]  Wenbin Lin,et al.  Heterogeneous asymmetric catalysis with homochiral metal-organic frameworks: network-structure-dependent catalytic activity. , 2007, Angewandte Chemie.

[148]  D. Volkmer,et al.  Two-dimensional metal-organic frameworks (MOFs) constructed from heterotrinuclear coordination units and 4,4'-biphenyldicarboxylate ligands. , 2007, Dalton transactions.

[149]  Seth M. Cohen,et al.  Topological control in heterometallic metal-organic frameworks by anion templating and metalloligand design. , 2006, Journal of the American Chemical Society.

[150]  S. Kitagawa,et al.  Dynamic motion of building blocks in porous coordination polymers. , 2006, Angewandte Chemie.

[151]  Song Gao,et al.  Chiral magnetic metal-organic frameworks of dimetal subunits: magnetism tuning by mixed-metal compositions of the solid solutions. , 2006, Inorganic chemistry.

[152]  G. Shimizu,et al.  Microporous metal-organic frameworks formed in a stepwise manner from luminescent building blocks. , 2006, Journal of the American Chemical Society.

[153]  Saeed Amirjalayer,et al.  Loading of porous metal–organic open frameworks with organometallic CVD precursors: inclusion compounds of the type [LnM]a@MOF-5 , 2006 .

[154]  S. Nguyen,et al.  A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. , 2006, Chemical communications.

[155]  Seth M. Cohen,et al.  A chiral, heterometallic metal-organic framework derived from a tris(chelate) coordination complex. , 2005, Chemical communications.

[156]  Jihong Yu,et al.  Synthesis, structure, and luminescent property of a heterometallic metal-organic framework constructed from rod-shaped secondary building blocks. , 2005, Inorganic chemistry.

[157]  M. Muhler,et al.  Metall@MOF: Beladung hoch poröser Koordinationspolymergitter durch Metallorganische Chemische Dampfabscheidung , 2005 .

[158]  R. Schmid,et al.  Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. , 2005, Angewandte Chemie.

[159]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[160]  H. Frei,et al.  Photochemical CO2 splitting by metal-to-metal charge-transfer excitation in mesoporous ZrCu(I)-MCM-41 silicate sieve. , 2005, Journal of the American Chemical Society.

[161]  Seth M. Cohen,et al.  Heterometallic metal-organic frameworks based on tris(dipyrrinato) coordination complexes. , 2005, Inorganic chemistry.

[162]  Banglin Chen,et al.  Porous Cu-Cd mixed-metal-organic frameworks constructed from Cu(Pyac)2 [Bis[3-(4-pyridyl)pentane-2,4-dionato]copper(II)]. , 2004, Inorganic chemistry.

[163]  Bin Zhao,et al.  Coordination polymers containing 1D channels as selective luminescent probes. , 2004, Journal of the American Chemical Society.

[164]  C. Serre,et al.  Synthesis, characterisation and luminescent properties of a new three-dimensional lanthanide trimesate: M((C6H3)–(CO2)3)(M = Y, Ln) or MIL-78 , 2004 .

[165]  Susumu Kitagawa,et al.  Immobilization of a metallo schiff base into a microporous coordination polymer. , 2004, Angewandte Chemie.

[166]  G. Shimizu,et al.  A sponge-like luminescent coordination framework via an Aufbau approach. , 2002, Chemical communications.

[167]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[168]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[169]  Y. Qian,et al.  Synthesis by a Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles , 1999 .

[170]  Chuan-De Wu,et al.  A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. , 2005, Journal of the American Chemical Society.

[171]  J. Kendall Inorganic Chemistry , 1944, Nature.