Probabilistic multiparty-controlled teleportation of an arbitrary m-qubit state with a pure entangled quantum channel against collective noise

We present two general schemes for multiparty-controlled teleportation of an arbitrary m-qubit state against two types of collective noise by using m pure entangled states as the quantum channel. The first is used to control teleporting for an arbitrary m-qubit state against a collective-dephasing noise with nonmaximally entangled quantum channel, and the second is in teleporting the m-qubit state against the collective-rotation noise. The receiver can reconstruct the original state with an auxiliary qubit and the corresponding unitary operations if he cooperates with all the controllers. The scheme is optimal as the probability that the receiver reconstructs the original state equals to the entanglement of the quantum channel.

[1]  Guang-Can Guo,et al.  Teleportation of a two-particle entangled state via entanglement swapping , 2000 .

[2]  Jian-Wei Pan,et al.  Memory-built-in quantum teleportation with photonic and atomic qubits , 2007, 0705.1256.

[3]  Hong-Yu Zhou,et al.  Passively self-error-rejecting qubit transmission over a collective-noise channel , 2008, Quantum Inf. Comput..

[4]  Chun-Yan Li,et al.  Fault-Tolerate Three-Party Quantum Secret Sharing over a Collective-Noise Channel , 2011 .

[5]  Fengli Yan,et al.  Probabilistic and controlled teleportation of unknown quantum states , 2003 .

[6]  李熙涵,et al.  Controlled Teleportation of an Arbitrary Multi-Qudit State in a General Form with d-Dimensional Greenberger-Horne-Zeilinger States , 2007 .

[7]  Yu-Bo Sheng,et al.  STABLE AND DETERMINISTIC QUANTUM KEY DISTRIBUTION BASED ON DIFFERENTIAL PHASE SHIFT , 2008, 0801.0259.

[8]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[9]  Ping Zhou,et al.  Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel , 2007, 0705.2660.

[10]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[11]  Fuguo Deng,et al.  Bidirectional quantum key distribution protocol with practical faint laser pulses , 2004 .

[12]  Deng Fu-Guo,et al.  Remote Three-Party Quantum State Sharing Based on Three-Atom Entangled States Assisted by Cavity QED and Flying Qubits , 2011 .

[13]  G. Long,et al.  General scheme for superdense coding between multiparties , 2001, quant-ph/0110112.

[14]  Ping Zhou,et al.  Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state , 2005, quant-ph/0511223.

[15]  Huang Yi-bin,et al.  Controlled Teleportation Using Four-Particle Cluster State , 2008 .

[16]  Yan Feng-li,et al.  Probabilistic Teleportation of an Unknown Two-Particle State with a Four-Particle Pure Entangled State and Positive Operator Valued Measure , 2006 .

[17]  Wang Hui,et al.  Two Types of Expanding Lie Algebra and New Expanding Integrable Systems , 2010 .

[18]  Chun-Wei Yang,et al.  Fault tolerant two-step quantum secure direct communication protocol against collective noises , 2011 .

[19]  Eugene S. Polzik Quantum teleportation between light and matter , 2007, QELS 2007.

[20]  Dong Yang,et al.  Experimental free-space quantum teleportation , 2010 .

[21]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[22]  Ping Zhou,et al.  Multiparty-controlled teleportation of an arbitrary GHZ-class state by using a d-dimensional (N+2)-particle nonmaximally entangled state as the quantum channel , 2011 .

[23]  R. Laflamme,et al.  Robust polarization-based quantum key distribution over a collective-noise channel. , 2003, Physical review letters.

[24]  Zhou Hong-Yu,et al.  Controlled Teleportation of an Arbitrary Multi-Qudit State in a General Form with d-Dimensional Greenberger Horne Zeilinger States , 2007 .

[25]  Yu-Bo Sheng,et al.  Efficient and economic five-party quantum state sharing of an arbitrary m-qubit state , 2008, 1005.0034.

[26]  Fuguo Deng,et al.  Faithful qubit transmission against collective noise without ancillary qubits , 2007, 0708.0068.

[27]  Genuine (k, m)-Threshold Controlled Teleportation and Multipartite Entanglement , 2011 .

[28]  Perfect Entanglement Teleportation via Two Parallel W State Channels , 2011 .

[29]  T Zhang Experimental Quantum Teleportation of Laser Beams , 2002 .

[30]  Guang-Can Guo,et al.  Probabilistic teleportation of two-particle entangled state , 2000 .

[31]  Kun Zhong,et al.  Deterministic secure quantum communication over a collective-noise channel , 2009 .

[32]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[33]  Chui-Ping Yang,et al.  Efficient many-party controlled teleportation of multiqubit quantum information via entanglement , 2004, quant-ph/0402138.

[34]  李春燕,et al.  Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations , 2005 .

[35]  Deng Fu-Guo,et al.  Probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel and its application in quantum state sharing , 2007 .

[36]  Xiu Xiao-Ming,et al.  Unknown State Transmission Using GHZ States via Collective Noise Channel , 2010 .

[37]  Mikio Nakahara,et al.  Economical (k,m) -threshold controlled quantum teleportation , 2009, 0901.2674.

[38]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[39]  Wang Yan,et al.  Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations , 2005 .

[40]  F.-L. Yan,et al.  Economical teleportation of multiparticle quantum state , 2003 .

[41]  Chuan Wang,et al.  Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state , 2005 .

[42]  Fuguo Deng,et al.  Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement , 2005, quant-ph/0501129.

[43]  Yan Feng-Li,et al.  Probabilistic Teleportation of Two-Particle State of General Formation* , 2002 .

[44]  Akihisa Tomita,et al.  Teleportation of an unknown state by W state , 2002 .

[45]  Wen Qiao-Yan,et al.  Universal Three-Party Quantum Secret Sharing Against Collective Noise , 2011 .

[46]  Fuguo Deng,et al.  Improving the security of secure direct communication based on the secret transmitting order of particles , 2006, quant-ph/0612016.

[47]  Jian-Wei Pan,et al.  Experimental multiparticle entanglement swapping for quantum networking. , 2009, Physical review letters.

[48]  Mingsheng Ying,et al.  Perfect many-to-one teleportation with stabilizer states , 2008 .

[49]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[50]  Fuguo Deng,et al.  Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs (4 pages) , 2005, quant-ph/0504158.

[51]  F. Verstraete,et al.  Optimal teleportation with a mixed state of two qubits. , 2003, Physical review letters.

[52]  Xiu Xiao-Ming,et al.  Quantum Secure Communication Using a Class of Three-Particle W State , 2008 .

[53]  Tao Li,et al.  High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense Coding with Hyperentanglement , 2011 .

[54]  Guang-Can Guo,et al.  Multiparticle Generalization of Teleportation , 2000 .

[55]  S. Olmschenk,et al.  Quantum Teleportation Between Distant Matter Qubits , 2009, Science.

[56]  Ping Zhou,et al.  Deterministic secure quantum communication without maximally entangled states , 2006 .

[57]  G. Long,et al.  Controlled order rearrangement encryption for quantum key distribution , 2003, quant-ph/0308172.

[58]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[59]  Li Wanli,et al.  Erratum: Probabilistic teleportation and entanglement matching [Phys. Rev. A 61, 034301 (2000)] , 2007 .

[60]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[61]  Anders Karlsson,et al.  Quantum Teleportation using Three Particle Entanglement , 1998, Technical Digest. 1998 EQEC. European Quantum Electronics Conference (Cat. No.98TH8326).

[62]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[63]  Arun K. Pati,et al.  Probabilistic Quantum Teleportation , 2002, quant-ph/0210004.

[64]  闫凤利,et al.  Probabilistic Teleportation of an Unknown Two-Particle State with a Four-Particle Pure Entangled State and Positive Operator Valued Measure , 2006 .

[65]  Xi-Han Li,et al.  Efficient quantum key distribution over a collective noise channel (6 pages) , 2008, 0808.0042.

[66]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[67]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[68]  Guang-Can Guo,et al.  Probabilistic teleportation and entanglement matching , 2000 .

[69]  Y. Shih,et al.  Quantum teleportation with a complete Bell state measurement , 2000, Physical Review Letters.

[70]  M. Bourennane,et al.  Quantum teleportation using three-particle entanglement , 1998 .

[71]  Tie-Jun Wang,et al.  Quantum state sharing of an arbitrary m-qudit state with two-qudit entanglements and generalized Bell-state measurements , 2008 .

[72]  Deng Fu-Guo,et al.  Efficient Quantum Cryptography Network without Entanglement and Quantum Memory , 2006 .