Nonparametric Regression and the Parametric Bootstrap for Local Dependence Assessment

Ideas underlying nonparametric regression and the parametric bootstrap are discussed. An overview is provided of their application to item response theory and, in particular, local dependence assessment. The resulting nonparametric item response theory parametric bootstrap can remove the need to specify a particular parametric form for the item response functions and correct for the statistical bias caused by conditioning on observed test scores. The method is applied to the problem of assessing local dependence that varies with examinee trait levels. This is done by using pointwise testing bands to examine the item pair conditional covariance at each examinee trait level. The pointwise bands are used to diagnose speededness in a testing situation in which unanswered items are scored as incorrect.

[1]  Furong Gao,et al.  Using Resampling Methods to Produce an Improved DIMTEST Procedure , 2001 .

[2]  Brian Habing,et al.  Conditional Covariance-Based Nonparametric Multidimensionality Assessment , 1996 .

[3]  James O. Ramsay,et al.  A Functional Approach to Modeling Test Data , 1997 .

[4]  J. Ramsay,et al.  Maximum marginal likelihood estimation for semiparametric item analysis , 1991 .

[5]  Georg Rasch,et al.  Probabilistic Models for Some Intelligence and Attainment Tests , 1981, The SAGE Encyclopedia of Research Design.

[6]  Furong Gao,et al.  Investigating Local Dependence With Conditional Covariance Functions , 1998 .

[7]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[8]  Hans-Georg Müller,et al.  Smooth optimum kernel estimators near endpoints , 1991 .

[9]  J. Ramsay Kernel smoothing approaches to nonparametric item characteristic curve estimation , 1991 .

[10]  Louis V. DiBello,et al.  A Kernel-Smoothed Version of SIBTEST With Applications to Local DIF Inference and Function Estimation , 1996 .

[11]  A. G. Froelich,et al.  Assessing Unidimensionality of Test Items and Some Asymptotics of Parametric Item Response Theory , 2000 .

[12]  M. R. Novick,et al.  Statistical Theories of Mental Test Scores. , 1971 .

[13]  James T. Wassell,et al.  Bootstrap Methods: A Practitioner's Guide , 2001, Technometrics.

[14]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[15]  Jeffrey Douglas,et al.  Nonparametric Item Response Function Estimation for Assessing Parametric Model Fit , 2001 .

[16]  D. Thissen,et al.  Local Dependence Indexes for Item Pairs Using Item Response Theory , 1997 .

[17]  Anne Boomsma,et al.  Essays on Item Response Theory , 2000 .

[18]  R. John,et al.  Boundary modification for kernel regression , 1984 .

[19]  Hae-Rim Kim New techniques for the dimensionality assessment of standardized test data , 1994 .

[20]  Roger E. Millsap,et al.  On the misuse of manifest variables in the detection of measurement bias , 1992 .

[21]  W. Härdle Applied Nonparametric Regression , 1992 .

[22]  Edward E. Roskam,et al.  Models for Speed and Time-Limit Tests , 1997 .

[23]  Roderick P. McDonald,et al.  Linear Versus Models in Item Response Theory , 1982 .

[24]  Wendy M. Yen,et al.  Scaling Performance Assessments: Strategies for Managing Local Item Dependence , 1993 .

[25]  Jörg Polzehl,et al.  Simultaneous bootstrap confidence bands in nonparametric regression , 1998 .

[26]  Saad T. Bakir,et al.  Nonparametric Regression and Spline Smoothing , 2000, Technometrics.

[27]  William F. Strout A new item response theory modeling approach with applications to unidimensionality assessment and ability estimation , 1990 .

[28]  Michelle Liou,et al.  Assessing statistical accuracy in ability estimation: A bootstrap approach , 1991 .

[29]  Brian W. Junker,et al.  Latent and Manifest Monotonicity in Item Response Models , 2000 .

[30]  Debashis Kushary,et al.  Bootstrap Methods and Their Application , 2000, Technometrics.

[31]  Rebecca Zwick,et al.  Assessing the Dimensionality of NAEP Reading Data , 1987 .

[32]  J. Douglas Joint consistency of nonparametric item characteristic curve and ability estimation , 1997 .

[33]  R. J. Mokken,et al.  Handbook of modern item response theory , 1997 .

[34]  James O. Ramsay,et al.  Multicategorical spline model for item response theory , 1992 .

[35]  Wendy M. Yen,et al.  Effects of Local Item Dependence on the Fit and Equating Performance of the Three-Parameter Logistic Model , 1984 .

[36]  N. D. Verhelst,et al.  A Logistic Model for Time-Limit Tests , 1992 .

[37]  John Hattie,et al.  Methodology Review: Assessing Unidimensionality of Tests and ltenls , 1985 .

[38]  William Stout,et al.  A nonparametric approach for assessing latent trait unidimensionality , 1987 .

[39]  N. D Verhelst,et al.  Handbook of Modern Item Response Theory , 1996 .

[40]  William Stout,et al.  The theoretical detect index of dimensionality and its application to approximate simple structure , 1999 .

[41]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[42]  E. Nadaraya On Estimating Regression , 1964 .

[43]  David J. Groggel,et al.  Practical Nonparametric Statistics , 2000, Technometrics.

[44]  William Stout,et al.  Conditional covariance structure of generalized compensatory multidimensional items , 1999 .

[45]  P. Rosenbaum Testing the conditional independence and monotonicity assumptions of item response theory , 1984 .

[46]  Cornelis A.W. Glas,et al.  Modification indices for the 2-PL and the nominal response model , 1999 .

[47]  Daniel M. Bolt,et al.  Conditional Covariance-Based Representation of Multidimensional Test Structure , 2001 .

[48]  Melvin R. Novick,et al.  Some latent train models and their use in inferring an examinee's ability , 1966 .

[49]  Clement A. Stone Monte Carlo Based Null Distribution for an Alternative Goodness‐of‐Fit Test Statistic in IRT Models , 2000 .

[50]  Mark D. Reckase,et al.  A Linear Logistic Multidimensional Model for Dichotomous Item Response Data , 1997 .