A simplified “polycrystalline” model for viscoplastic and damage finite element analyses

Abstract In the framework of classical polycrystalline models, drastic reductions of the numbers of slip systems and of “grains” are proposed. With a number of “grains” representing the texture of the material smaller than 10, good results are obtained either for initially isotropic fcc steel or anisotropic hcp zirconium alloy, with some predictive capacity despite the partial loss of physical relevance. Finite element analyses CPU times are not significantly increased as compared to advanced macroscopic models. Novel extensions of the polycrystalline model are developed for intergranular creep or void growth damage. This methodology increases the field of application of the polycrystalline approach in plastic anisotropy, cyclic plasticity, plastic instability and fracture, and in corresponding industrial problems.

[1]  P. Delobelle,et al.  Etude des lois de comportement a haute temperature en “plasticite-fluage”, d'un acier inoxydable austenitique (12–17 SPH) , 1986 .

[2]  V. Tvergaard,et al.  A phenomenological plasticity model with non-normality effects representing observations in crystal plasticity , 2001 .

[3]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  Ricardo A. Lebensohn,et al.  A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals : application to zirconium alloys , 1993 .

[5]  A. P. Karafillis,et al.  A general anisotropic yield criterion using bounds and a transformation weighting tensor , 1993 .

[6]  E. Loute,et al.  Ductile failure of cylindrically porous materials. Part II: other cases of symmetry , 2004 .

[7]  P. Robinet Étude expérimentale et modélisation du comportement viscoplastique anisotrope du zircaloy 4 dans deux états métallurgiques , 1995 .

[8]  M. Gotoh A theory of plastic anisotropy based on a yield function of fourth order (plane stress state)—I , 1977 .

[9]  G. Cailletaud A micromechanical approach to inelastic behaviour of metals , 1992 .

[10]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[11]  J. Jonas,et al.  Relation between axial stresses and texture development during torsion testing: A simplified theory , 1985 .

[12]  Jérôme Crépin,et al.  A procedure for identifying the plastic behavior of single crystals from the local response of polycrystals , 2003 .

[13]  Jacques Besson,et al.  A yield function for anisotropic materials Application to aluminum alloys , 2004 .

[14]  André Zaoui,et al.  An extension of the self-consistent scheme to plastically-flowing polycrystals , 1978 .

[15]  J. Pan,et al.  FAILURE PREDICTION IN ANISOTROPIC SHEET METALS UNDER FORMING OPERATIONS WITH CONSIDERATION OF ROTATING PRINCIPAL STRETCH DIRECTIONS , 2000 .

[16]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[17]  C. Rey,et al.  Modeling of deformation and rotation bands and of deformation induced grain boundaries in IF steel aggregate during large plane strain compression , 2004 .

[18]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[19]  M. Kuroda A phenomenological plasticity model accounting for hydrostatic stress-sensitivity and vertex-type of effect , 2004 .

[20]  Renaud Masson,et al.  Self-consistent estimates for the rate-dependentelastoplastic behaviour of polycrystalline materials , 1999 .

[21]  Sylvain Calloch,et al.  A general cyclic plasticity model taking into account yield surface distortion for multiaxial ratchetting , 2004 .

[22]  R. Asaro,et al.  Overview no. 42 Texture development and strain hardening in rate dependent polycrystals , 1985 .

[23]  S. Ahzi,et al.  A self consistent approach of the large deformation polycrystal viscoplasticity , 1987 .

[24]  Sylvain Calloch,et al.  Ratchetting under tension–torsion loadings: experiments and modelling , 2000 .

[25]  R. Hill,et al.  XLVI. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. , 1951 .

[26]  F. Barlat,et al.  A six-component yield function for anisotropic materials , 1991 .

[27]  R. Hill,et al.  CXXVIII. A theoretical derivation of the plastic properties of a polycrystalline face-centred metal , 1951 .

[28]  G. Cailletaud,et al.  Utilisation de modèles polycristallins pour le calcul par éléments finis , 1994 .

[29]  Yan Liu,et al.  Creep fracture modeling by use of continuum damage variable based on Voronoi simulation of grain boundary cavity , 1998 .

[30]  Viggo Tvergaard,et al.  Use of abrupt strain path change for determining subsequent yield surface: illustrations of basic idea , 1999 .

[31]  Laurent Duchene,et al.  FEM study of metal sheets with a texture based, local description of the yield locus , 2003 .

[32]  Sylvain Calloch,et al.  An Improvement of Multiaxial Ratchetting Modeling Via Yield Surface Distortion , 2002 .

[33]  Viggo Tvergaard,et al.  On the creep constrained diffusive cavitation of grain boundary facets , 1984 .

[34]  Patrick Onck,et al.  Growth of an initially sharp crack by grain boundary cavitation , 1998 .

[35]  P. Houtte,et al.  Convex plastic potentials of fourth and sixth rank for anisotropic materials , 2004 .

[36]  Dierk Raabe,et al.  Using texture components in crystal plasticity finite element simulations , 2004 .

[37]  A. K. Pilkey,et al.  A linked FEM-damage percolation model of aluminum alloy sheet forming , 2003 .

[38]  F. Montheillet,et al.  A texture based continuum approach for predicting the plastic behaviour of rolled sheet , 2003 .

[39]  Lallit Anand,et al.  A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B , 2003 .

[40]  John R. Rice,et al.  Plastic creep flow effects in the diffusive cavitation of grain boundaries , 1980 .

[41]  E. Kröner Zur plastischen verformung des vielkristalls , 1961 .

[42]  Ricardo A. Lebensohn,et al.  A selfconsistent formulation for the prediction of the anisotropic behavior of viscoplastic polycrystals with voids , 2004 .

[43]  S. Forest,et al.  Polycrystal modelling of IF-Ti steel under complex loading path , 2001 .

[44]  P. Pilvin Approches multiechelles pour la prévison du comportement anélastique des métaux , 1990 .

[45]  P. Houtte,et al.  Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning , 1978 .

[46]  Wiktor Gambin,et al.  Model of plastic anisotropy evolution with texture-dependent yield surface , 2004 .

[47]  G. Cailletaud Une approche micromecanique phenomenologique du comportement inelastique des metaux , 1987 .

[48]  J. Devaux,et al.  A Methodology for Ductile Fracture Analysis Based on Damage Mechanics: An Illustration of a Local Approach of Fracture , 1988 .

[49]  Laurent Duchene,et al.  Anisotropic elasto-plastic finite element analysis using a stress-strain interpolation method based on a polycrystalline model , 2004 .