Granular Rough Theory: A representation semantics oriented theory of roughness

The present work is an archival paper for a series of contributions proposed in last few years on building a theory of roughness over pure mereological relations among information granules. There are five major efforts taken in the present paper: (1) emphasizing on the representational semantics of theory of roughness: to approximately represent a class of entities characterized by some aspects in terms of entity collections described at other aspects; (2) defining a representation model Granular Representation Calculus (GrRC) to synthesize complex information systems from information granules; (3) establishing notion of Granular Rough Theory (GrRT) over information granules operated in terms of GrRC; (4) extending GrRC/GrRT to various computational environments such as multi-agent systems and ontological computing environments; (5) exploring pragmatic aspects of GrRC/GrRT in implementing prototypes with data model and object programming orientations, and proposing an Ontology-Driven Web Information System as a granular-rough computational Web intelligence framework over GrRC/GrRT.

[1]  Nicola Guarino,et al.  Formal ontology, conceptual analysis and knowledge representation , 1995, Int. J. Hum. Comput. Stud..

[2]  Bo Chen,et al.  ODWIS as a Prototype of Knowledge Service Layer in Semantic Grid , 2004, PDCAT.

[3]  Zhou Ming A Lesniewski Mereological Analysis on Roughness Theory , 2006 .

[4]  Adam Pease,et al.  Origins of The IEEE Standard Upper Ontology , 2004 .

[5]  Zbigniew W. Ras,et al.  Proceedings of the 7th International Symposium on Methodologies for Intelligent Systems , 1993 .

[6]  Boris Hennig What is Formal Ontology , 2004 .

[7]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[8]  Perry L. Miller,et al.  Application of Technology: Managing Attribute-Value Clinical Trials Data Using the ACT/DB Client-Server Database System , 1998, J. Am. Medical Informatics Assoc..

[9]  Bo Chen Granular Rough Theory Research: Granular Rough Theory Research , 2008 .

[10]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[11]  Achille C. Varzi,et al.  Ontological Tools for Geographic Representation , 1998 .

[12]  Jennifer Widom,et al.  The Lorel query language for semistructured data , 1997, International Journal on Digital Libraries.

[13]  Bo Chen,et al.  A Pure Mereological Approach to Roughness , 2003, RSFDGrC.

[14]  Douglas Herrmann,et al.  A Taxonomy of Part-Whole Relations , 1987, Cogn. Sci..

[15]  Barry Smith,et al.  Mereotopology: A Theory of Parts and Boundaries , 1996, Data Knowl. Eng..

[16]  Bo Chen,et al.  Adapting Granular Rough Theory to Multi-agent Context , 2003, RSFDGrC.

[18]  Eugene C. Luschei,et al.  The logical systems of Lesniewski , 1962 .

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  E. F. CODD,et al.  A relational model of data for large shared data banks , 1970, CACM.

[21]  J. Kacprzyk,et al.  Advances in the Dempster-Shafer theory of evidence , 1994 .

[22]  Robert L. Martino,et al.  Performance of using Oracle XMLDB in the evaluation of CDISC ODM for a clinical study informatics system , 2004 .

[23]  Adam Pease,et al.  Towards a standard upper ontology , 2001, FOIS.

[24]  Chris Welty,et al.  FOIS introduction: Ontology---towards a new synthesis , 2001, FOIS.

[25]  Barry Smith,et al.  GOL: toward an axiomatized upper-level ontology , 2001, FOIS.

[26]  Prakash M. Nadkarni,et al.  Data Extraction and Ad Hoc Query of an Entity– Attribute–Value Database , 2000 .

[27]  Yiyu Yao,et al.  Generalization of Rough Sets using Modal Logics , 1996, Intell. Autom. Soft Comput..

[28]  Mingtian Zhou,et al.  EXTENDING GRANULAR REPRESENTATION CALCULUS FOR INTERNET MEDIA RESOURCES , 2004 .

[29]  Zhou Ming-tian,et al.  Granular Rough Theory Research , 2008 .

[30]  Philip S. Yu,et al.  Proceedings of the Eleventh International Conference on Data Engineering , 1995 .

[31]  Jacob Anhøj,et al.  Generic Design of Web-Based Clinical Databases , 2003, Journal of medical Internet research.

[32]  Andrzej Skowron,et al.  Rough Mereological Foundatins for Design, Analysis, Synthesis, and Control in Distributed Systems , 1998, Inf. Sci..

[33]  Andrzej Skowron,et al.  Rough Mereology , 1994, ISMIS.

[34]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[35]  Thomas R. Gruber,et al.  Toward principles for the design of ontologies used for knowledge sharing? , 1995, Int. J. Hum. Comput. Stud..

[36]  Z. Pawlak,et al.  Rough membership functions , 1994 .

[37]  Anthony G. Cohn,et al.  A Foundation for Region-based Qualitative Geometry , 2000, ECAI.

[38]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[39]  Tsau Young Lin,et al.  Computational Web Intelligence (CWI): synergy of computational intelligence and Web technology , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[40]  Robert M. Colomb,et al.  Formal Versus Material Ontologies for Information Systems Interoperation in the Semantic Web , 2002, Comput. J..

[41]  Wojtek Michalowski,et al.  Rough Set Methodology in Clinical Practice: Controlled Hospital Trial of the MET System , 2004, Rough Sets and Current Trends in Computing.

[42]  Nicola Guarino,et al.  An Ontological Theory of Physical Objects , 2001 .

[43]  Barry Smith,et al.  FOIS introduction: Ontology---towards a new synthesis , 2001, FOIS.

[44]  Hiroshi Tanaka,et al.  Induction of Expert System Rules from Databases Based on Rough Set Theory and Resampling Methods , 1996, ISMIS.

[45]  Perry L. Miller,et al.  TrialDB: A Web-based Clinical Study Data Management System AMIA 2003 Open Source Expo , 2003, AMIA.

[46]  Zdzislaw Pawlak,et al.  A Treatise on Rough Sets , 2005, Trans. Rough Sets.

[47]  Jennifer Widom,et al.  Object exchange across heterogeneous information sources , 1995, Proceedings of the Eleventh International Conference on Data Engineering.