Faber-Krahn type inequalities for trees
暂无分享,去创建一个
[1] Frank Harary,et al. Graph Theory , 2016 .
[2] D. Cvetkovic,et al. Spectra of Graphs: Theory and Applications , 1997 .
[3] Inégalités de Faber–Krahn et Inclusion de Sobolev–Orlicz , 1997 .
[4] Josef Leydold. The geometry of regular trees with the Faber?Krahn property , 2002, Discret. Math..
[5] J. Leydold,et al. Discrete Nodal Domain Theorems , 2000, math/0009120.
[6] Alexander R. Pruss. Discrete convolution-rearrangement inequalities and the Faber-Krahn inequality on regular trees , 1998 .
[7] Atsushi Katsuda,et al. The Faber-Krahn type isoperimetric inequalities for a graph , 1999 .
[8] Norman Biggs. Algebraic Graph Theory: Index , 1974 .
[9] J. Friedman. Some geometric aspects of graphs and their eigenfunctions , 1993 .
[10] Josef Leydold. A Faber-Krahn-type inequality for regular trees , 1997 .
[11] I. Chavel. Eigenvalues in Riemannian geometry , 1984 .
[12] Yves Colin de Verdière. Le trou spectral des graphes et leurs propriétés d'expansion , 1994 .
[13] G. Carron,et al. INÉGALITÉS ISOPÉRIMÉTRIQUES DE FABER-KRAHN ET CONSÉQUENCES , 2002 .