Spatiotemporal clustering of fMRI time series in the spectral domain

We propose a new method for the analysis of functional magnetic resonance images (fMRI). The decision that a voxel v0 is activated is based not solely on the value of the fMRI signal at v0, but rather on the comparison of all time series s(v)(t) in a small neighborhood Nv0 around v0. Our approach explicitly takes into account the intrinsic spatiotemporal correlations that exist in the data. We focus on experimental designs with periodic stimuli, and therefore we can capture most of the features of the BOLD signal with a low dimensional subspace in the frequency domain. The presence of activated time series can be detected by partitioning the time series in this low dimensional space. Experiments with simulated data, and experimental fMRI data, demonstrate that our approach can outperform standard methods of analysis, such as the t-test.

[1]  M. D’Esposito,et al.  The variability of human BOLD hemodynamic responses , 1998, NeuroImage.

[2]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[3]  J A Sorenson,et al.  ROC methods for evaluation of fMRI techniques , 1996, Magnetic resonance in medicine.

[4]  James S. Duncan,et al.  Medical Image Analysis , 1999, IEEE Pulse.

[5]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[6]  Gabriele Lohmann,et al.  On Multivariate Spectral Analysis of fMRI Time Series , 2001, NeuroImage.

[7]  Karl J. Friston,et al.  Functional Connectivity: The Principal-Component Analysis of Large (PET) Data Sets , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[8]  François G. Meyer,et al.  Analysis of Event-Related fMRI Data Using Best Clustering Bases , 2003, IPMI.

[9]  D. Brillinger Time series - data analysis and theory , 1981, Classics in applied mathematics.

[10]  David R. Brillinger,et al.  Time Series: Data Analysis and Theory. , 1982 .

[11]  Thomas E. Nichols,et al.  Statistical limitations in functional neuroimaging. II. Signal detection and statistical inference. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[12]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[13]  Karl J. Friston,et al.  Variability in fMRI: An Examination of Intersession Differences , 2000, NeuroImage.

[14]  R. Baumgartner,et al.  Validating fuzzy clusters in fMRI data: A supervised approach , 2000, NeuroImage.

[15]  E C Wong,et al.  Processing strategies for time‐course data sets in functional mri of the human brain , 1993, Magnetic resonance in medicine.

[16]  Thomas E. Nichols,et al.  Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[17]  E. DeYoe,et al.  Analysis and use of FMRI response delays , 2001, Human brain mapping.

[18]  L. K. Hansen,et al.  On Clustering fMRI Time Series , 1999, NeuroImage.

[19]  B. Ripley,et al.  A new statistical approach to detecting significant activation in functional MRI , 2000, NeuroImage.

[20]  J C Gore,et al.  An roc approach for evaluating functional brain mr imaging and postprocessing protocols , 1995, Magnetic resonance in medicine.

[21]  Scott L. Zeger,et al.  Non‐linear Fourier Time Series Analysis for Human Brain Mapping by Functional Magnetic Resonance Imaging , 1997 .

[22]  T.M. Talavage,et al.  Testing a model for MR imager noise , 2002, Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology.

[23]  C. Windischberger,et al.  Quantification in functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis. , 1998, Magnetic resonance imaging.

[24]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[25]  S Zeki,et al.  Parallelism and functional specialization in human visual cortex. , 1990, Cold Spring Harbor symposia on quantitative biology.

[26]  J. Simonoff Multivariate Density Estimation , 1996 .

[27]  P. Boesiger,et al.  A new correlation‐based fuzzy logic clustering algorithm for FMRI , 1998, Magnetic resonance in medicine.

[28]  C Gössl,et al.  Dynamic models in fMRI , 2000, Magnetic resonance in medicine.

[29]  E. Kaplan,et al.  A Principal Components-Based Method for the Detection of Neuronal Activity Maps: Application to Optical Imaging , 2000, NeuroImage.

[30]  G. McCarthy,et al.  Human Brain Mapping 6:1–13(1998) � Functional MRI Studies of Auditory Comprehension , 2022 .

[31]  Karl J. Friston,et al.  Revealing interactions among brain systems with nonlinear PCA , 1999, Human brain mapping.

[32]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[33]  E. Bullmore,et al.  Statistical methods of estimation and inference for functional MR image analysis , 1996, Magnetic resonance in medicine.

[34]  P. Mitra,et al.  Analysis of dynamic brain imaging data. , 1998, Biophysical journal.

[35]  T Allison,et al.  Magnetic resonance imaging studies of functional brain activation: analysis and interpretation. , 1996, Electroencephalography and clinical neurophysiology. Supplement.

[36]  P. Lauterbur,et al.  Principles of magnetic resonance imaging : a signal processing perspective , 1999 .