On Complexity of the Quantum Ising Model

[1]  Yudong Cao,et al.  Perturbative gadgets without strong interactions , 2014, Quantum Inf. Comput..

[2]  Sergey Bravyi,et al.  Monte Carlo simulation of stoquastic Hamiltonians , 2014, Quantum Inf. Comput..

[3]  U. Vazirani,et al.  How "Quantum" is the D-Wave Machine? , 2014, 1401.7087.

[4]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[5]  Ashley Montanaro,et al.  Complexity Classification of Local Hamiltonian Problems , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[6]  Andrew M. Childs,et al.  The Bose-Hubbard Model is QMA-complete , 2013, Theory Comput..

[7]  P. Fendley Free parafermions , 2013, 1310.6049.

[8]  Sean Hallgren,et al.  The local Hamiltonian problem on a line with eight states is QMA-complete , 2013, Quantum Inf. Comput..

[9]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[10]  Matthew B. Hastings,et al.  Obstructions to classically simulating the quantum adiabatic algorithm , 2013, Quantum Inf. Comput..

[11]  P. Shor,et al.  Performance of the quantum adiabatic algorithm on random instances of two optimization problems on regular hypergraphs , 2012, 1208.3757.

[12]  M. Hastings,et al.  Universal Signatures of Fractionalized Quantum Critical Points , 2011, Science.

[13]  D. DiVincenzo,et al.  Schrieffer-Wolff transformation for quantum many-body systems , 2011, 1105.0675.

[14]  Matthew B. Hastings,et al.  Topological entanglement entropy of a Bose-Hubbard spin liquid , 2011, 1102.1721.

[15]  Edward Farhi,et al.  Quantum adiabatic algorithms, small gaps, and different paths , 2009, Quantum Inf. Comput..

[16]  D. DiVincenzo,et al.  Quantum simulation of many-body Hamiltonians using perturbation theory with bounded-strength interactions. , 2008, Physical review letters.

[17]  F. Verstraete,et al.  Computational complexity of interacting electrons and fundamental limitations of density functional theory , 2007, 0712.0483.

[18]  S. Pakuliak,et al.  Form-factors in the Baxter–Bazhanov–Stroganov model II: Ising model on the finite lattice , 2007, 0711.0457.

[19]  S. Sondhi,et al.  Cavity method for quantum spin glasses on the Bethe lattice , 2007, 0706.4391.

[20]  Sandy Irani,et al.  The Power of Quantum Systems on a Line , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[21]  Barbara M. Terhal,et al.  Merlin-Arthur Games and Stoquastic Complexity , 2006, ArXiv.

[22]  David P. DiVincenzo,et al.  The complexity of stoquastic local Hamiltonian problems , 2006, Quantum Inf. Comput..

[23]  F. Verstraete,et al.  Criticality, the area law, and the computational power of projected entangled pair states. , 2006, Physical review letters.

[24]  M. Ruskai,et al.  Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.

[25]  R. Oliveira,et al.  The complexity of quantum spin systems on a two-dimensional square lattice , 2005, Quantum Inf. Comput..

[26]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[27]  M. Troyer,et al.  Quantum monte carlo simulations of confined bosonic atoms in optical lattices , 2004, cond-mat/0404552.

[28]  C. Henley From classical to quantum dynamics at Rokhsar–Kivelson points , 2003, cond-mat/0311345.

[29]  D. Aharonov,et al.  Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.

[30]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[31]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[32]  S. Sorella,et al.  Numerical study of the two-dimensional Heisenberg model using a Green function Monte Carlo technique with a fixed number of walkers , 1998 .

[33]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[34]  I. S. Tupitsyn,et al.  Exact quantum Monte Carlo process for the statistics of discrete systems , 1996, cond-mat/9612091.

[35]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[36]  A. Sandvik,et al.  Quantum Monte Carlo simulation method for spin systems. , 1991, Physical review. B, Condensed matter.

[37]  Trivedi,et al.  Green-function Monte Carlo study of quantum antiferromagnets. , 1989, Physical review. B, Condensed matter.

[38]  Kopec,et al.  Instabilities in the quantum Sherrington-Kirkpatrick Ising spin glass in transverse and longitudinal fields. , 1989, Physical review. B, Condensed matter.

[39]  J. H. Hetherington,et al.  Observations on the statistical iteration of matrices , 1984 .

[40]  Sudip Chakravarty,et al.  Monte Carlo Simulation of Quantum Spin Systems , 1982 .

[41]  Seiji Miyashita,et al.  Monte Carlo Simulation of Quantum Spin Systems. I , 1977 .

[42]  P. Pfeuty The one-dimensional Ising model with a transverse field , 1970 .

[43]  J. Schrieffer,et al.  Relation between the Anderson and Kondo Hamiltonians , 1966 .

[44]  S. Sachdev Quantum Phase Transitions: A first course , 2011 .