Physical-layer security for indoor visible light communications

This paper considers secure transmission over the visible light communication (VLC) channel by the means of physical-layer security techniques. In particular, we consider achievable secrecy rates of the multiple-input, single-output (MISO) wiretap VLC channel. The VLC channel is modeled as a deterministic and real-valued Gaussian channel subject to amplitude constraints. We utilize null-steering and artificial noise strategies to achieve positive secrecy rates when the eavesdropper's channel state information (CSI) is perfectly known and entirely unknown to the transmitter, respectively. In both scenarios, the legitimate receiver's CSI is available to the transmitter. We numerically evaluate achievable secrecy rates under typical VLC scenarios and show that simple precoding techniques can significantly improve the confidentiality of VLC links.

[1]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[2]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[3]  S. Dimitrov,et al.  Signal Shaping and Modulation for Optical Wireless Communication , 2012, Journal of Lightwave Technology.

[4]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[5]  R. Negi,et al.  Secret communication using artificial noise , 2005, VTC-2005-Fall. 2005 IEEE 62nd Vehicular Technology Conference, 2005..

[6]  Vincent W. S. Chan,et al.  Nulling strategies for preventing interference and interception of free space optical communication , 2013, 2013 IEEE International Conference on Communications (ICC).

[7]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas I: The MISOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[8]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas—Part II: The MIMOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[9]  Sennur Ulukus,et al.  Gaussian wiretap channel with an amplitude constraint , 2012, 2012 IEEE Information Theory Workshop.

[10]  Joel G. Smith,et al.  The Information Capacity of Amplitude- and Variance-Constrained Scalar Gaussian Channels , 1971, Inf. Control..

[11]  Dominic C. O'Brien,et al.  High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting , 2009, IEEE Journal on Selected Areas in Communications.

[12]  Masao Nakagawa,et al.  Fundamental analysis for visible-light communication system using LED lights , 2004, IEEE Transactions on Consumer Electronics.

[13]  Matthieu R. Bloch,et al.  Physical-Layer Security: From Information Theory to Security Engineering , 2011 .

[14]  Vincent W. S. Chan,et al.  Using Spatial Diversity to Improve the Confidentiality of Atmospheric Free Space Optical Communication , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[15]  A. Lee Swindlehurst,et al.  Fixed SINR solutions for the MIMO wiretap channel , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.