Some inequalities for the trigamma function in terms of the digamma function

In the paper, the authors establish three kinds of inequalities for the trigamma function in terms of the exponential function to powers of the digamma function. These newly established inequalities extend some known results. The method in the paper utilizes some facts from the asymptotic theory and is a natural way to solve problems for approximating some quantities for large values of the variable.

[1]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[2]  K. Knopp Theory and Application of Infinite Series , 1990 .

[3]  Feng Qi (祁锋) Bounds for the Ratio of Two Gamma Functions , 2009 .

[4]  Feng Qi (祁锋),et al.  Sharp Inequalities for Polygamma Functions , 2009, 0903.1984.

[5]  Stamatis Koumandos,et al.  Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler's gamma function , 2008, 0811.2870.

[6]  C. Berg,et al.  Complete Monotonicity of a Difference Between the Exponential and Trigamma Functions and Properties Related to a Modified Bessel Function , 2013 .

[7]  Feng Qi (祁锋),et al.  On the Increasing Monotonicity of a Sequence Originating from Computation of the Probability of Intersecting between a Plane Couple and a Convex Body , 2015 .

[8]  Feng Qi (祁锋),et al.  Completely monotonic functions involving divided differences of the di- and tri-gamma functions and some applications , 2009 .

[9]  Feng Qi,et al.  The Best Bounds in Gautschi-Kershaw Inequalities , 2006 .

[10]  Feng Qi (祁锋) BOUNDS FOR THE RATIO OF TWO GAMMA FUNCTIONS-FROM WENDEL'S AND RELATED INEQUALITIES TO LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS , 2009, 0904.1048.

[11]  A. Erdélyi Asymptotic Expansions of Fourier Integrals Involving Logarithmic Singularities , 1956 .

[12]  Necdet Batır An interesting double inequality for Euler's gamma function. , 2004 .

[13]  Chao Chen,et al.  Asymptotic formulae associated with the Wallis power function and digamma function , 2013 .

[14]  Feng Qi (祁锋),et al.  A CLASS OF COMPLETELY MONOTONIC FUNCTIONS INVOLVING DIVIDED DIFFERENCES OF THE PSI AND TRI-GAMMA FUNCTIONS AND SOME APPLICATIONS , 2009, Journal of the Korean Mathematical Society.

[15]  S. Italia Complete monotonicity of functions involving the q-trigamma and q-tetragamma functions , 2015 .

[16]  Feng Qi,et al.  Necessary and sufficient conditions for functions involving the tri- and tetra-gamma functions to be completely monotonic , 2010, Adv. Appl. Math..

[17]  Feng Qi (祁锋),et al.  A completely monotonic function involving the tri- and tetra-gamma functions , 2010, 1001.4611.

[18]  Feng Qi (祁锋) A completely monotonic function involving the gamma and trigamma functions , 2013, 1307.5407.

[19]  Cristinel Mortici,et al.  Some best approximation formulas and inequalities for the Wallis ratio , 2013, Appl. Math. Comput..

[20]  Feng Qi (祁锋),et al.  On proofs for monotonicity of a function involving the psi and exponential functions , 2013 .

[21]  Feng Qi (祁锋),et al.  Sharp inequalities for the psi function and harmonic numbers , 2009, Analysis.

[22]  Feng Qi (祁锋) Properties of modified Bessel functions and completely monotonic degrees of differences between exponential and trigamma functions , 2013, 1302.6731.

[23]  Feng Qi,et al.  Integral representations and complete monotonicity related to the remainder of Burnside's formula for the gamma function , 2014, J. Comput. Appl. Math..

[24]  Feng Qi (祁锋) A COMPLETELY MONOTONIC FUNCTION RELATED TO THE q-TRIGAMMA FUNCTION , 2014 .

[25]  S. Koumandos Remarks on some completely monotonic functions , 2006 .

[26]  C. Mortici A continued fraction approximation of the gamma function , 2013 .

[27]  Cristinel Mortici,et al.  Very accurate estimates of the polygamma functions , 2010, Asymptot. Anal..

[28]  Josip Pečarić,et al.  The best bounds in Gautschi's inequality , 2000 .

[29]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[30]  Yu-Ming Chu,et al.  A Double Inequality for the Trigamma Function and Its Applications , 2014 .

[31]  H. Gould Coefficient Identities for Powers of Taylor and Dirichlet Series , 1974 .

[32]  Feng Qi (祁锋),et al.  Refinements of lower bounds for polygamma functions , 2009, Proceedings of the American Mathematical Society.

[33]  Cristinel Mortici,et al.  A subtly analysis of Wilker inequality , 2013, Appl. Math. Comput..

[34]  Feng Qi,et al.  A logarithmically completely monotonic function involving the ratio of two gamma functions and originating from the coding gain , 2013, ArXiv.

[35]  Feng Qi (祁锋),et al.  An alternative proof of Elezović-Giordano-Pečarić's theorem , 2009, 0903.1174.

[36]  Feng Qi (祁锋),et al.  A class of completely monotonic functions involving the gamma and polygamma functions , 2014 .

[37]  Ward Cheney,et al.  A course in approximation theory , 1999 .

[38]  Feng Qi (祁锋),et al.  The additivity of polygamma functions , 2009, 0903.0888.

[39]  Cristinel Mortici,et al.  New improvements of the Stirling formula , 2010, Appl. Math. Comput..

[40]  Cristinel Mortici,et al.  New approximation formulas for evaluating the ratio of gamma functions , 2010, Math. Comput. Model..

[41]  Horst Alzer,et al.  On some inequalities for the gamma and psi functions , 1997, Math. Comput..

[42]  Horst Alzer,et al.  Monotonicity properties of the gamma function , 2007, Appl. Math. Lett..

[43]  Feng Qi (祁锋),et al.  Complete monotonicity, completely monotonic degree, integral representations, and an inequality related to the exponential, trigamma, and modified Bessel functions , 2012, 1210.2012.

[44]  Feng Qi (祁锋),et al.  Some uniqueness results for the non-trivially complete monotonicity of a class of functions involving the polygamma and related functions , 2009, 0904.1104.

[45]  Feng Qi (祁锋),et al.  Some properties of the psi and polygamma functions , 2009, 0903.1003.

[46]  Feng Qi (祁锋),et al.  Complete monotonicity of a function involving the divided difference of digamma functions , 2013, 1301.0155.

[47]  Cristinel Mortici,et al.  Ramanujan formula for the generalized Stirling approximation , 2010, Appl. Math. Comput..

[48]  D. S. Mitrinovic,et al.  Classical and New Inequalities in Analysis , 1992 .

[49]  Feng Qi,et al.  Bounds for the Ratio of Two Gamma Functions , 2009, 0904.1048.

[50]  Feng Qi,et al.  Complete monotonicity of a function involving the gamma function and applications , 2011, Period. Math. Hung..

[51]  Cristinel Mortici,et al.  New approximations of the gamma function in terms of the digamma function , 2010, Appl. Math. Lett..

[52]  C. Mortici The natural approach of Wilker-Cusa-Huygens inequalities , 2011 .

[53]  Feng Qi,et al.  Complete monotonicity of two functions involving the tri-and tetra-gamma functions , 2012, Period. Math. Hung..

[54]  Feng Qi (祁锋),et al.  Complete Monotonicity of a Difference Between the Exponential and Trigamma Functions and Properties Related to a Modified Bessel Function , 2012, Mediterranean Journal of Mathematics.

[55]  Cristinel Mortici,et al.  Estimating gamma function by digamma function , 2010, Math. Comput. Model..

[56]  Necdet Batır Sharp bounds for the psi function and harmonic numbers , 2011 .

[57]  S. Dragomir,et al.  COMPLETE MONOTONICITY OF A FUNCTION INVOLVING THE DIVIDED DIFFERENCE OF PSI FUNCTIONS , 2013, Bulletin of the Australian Mathematical Society.

[58]  Feng Qi (祁锋),et al.  Asymptotic Formulas and Inequalities for the Gamma Function in Terms of the Tri-Gamma Function , 2013, 1312.5881.