Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses

Square-lattice microstructure geometry of photonic crystal fibers made with high nonlinearity non-silica glass composition material as well as fused silica glass are studied here for modal propagation, dispersion analysis and supercontinuum generation. Our investigation of nonlinear propagation of low threshold power femtosecond pulse aims at generating supercontinuum in the near and mid infrared region using these highly nonlinear fibers. We performed a series of analyses through varying parameters of square-lattice geometry to map a desired broadband window. We also demonstrate a compact high power broadband source in visible region generated within few centimeter length of the fused silica square-lattice microstructure.

[1]  Sourabh Roy,et al.  Analysis of arbitrary index profile planar optical waveguides and multilayer nonlinear structures: a simple finite difference algorithm , 2007 .

[2]  Initial dynamics of supercontinuum generation in highly nonlinear photonic crystal fiber. , 2007 .

[3]  J R Taylor,et al.  Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser. , 2008, Optics express.

[4]  Robert R. Alfano,et al.  The Supercontinuum Laser Source , 1989 .

[5]  A. Lohner,et al.  Generation of 200 femtosecond pulses tunable between 2.5 and 5.5 µm , 1994 .

[6]  Benjamin J Eggleton,et al.  Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. , 2008, Optics letters.

[7]  S. Selleri,et al.  Dispersion properties of square-lattice photonic crystal fibers. , 2004, Optics express.

[8]  D-P Wei,et al.  Spectral broadening of femtosecond pulses in a single-mode As-S glass fiber. , 2005, Optics express.

[9]  G. Marshall,et al.  Tunable spectral enhancement of fiber supercontinuum. , 2007, Optics letters.

[10]  An Ping Zhao,et al.  Highly birefringent rectangular lattice photonic crystal fibres , 2004 .

[11]  F. Noack,et al.  Tunable femtosecond optical parametric amplifier in the mid-infrared with narrow-band seeding , 1995 .

[12]  Sergei K. Turitsyn,et al.  Optical spectral broadening and supercontinuum generation in telecom applications , 2006 .

[13]  T. Strasser,et al.  Grating resonances in air-silica microstructured optical fibers. , 1999, Optics letters.

[14]  Clemens F. Kaminski,et al.  Supercontinuum radiation for applications in chemical sensing and microscopy , 2008 .

[16]  S. Selleri,et al.  Single-mode regime of square-lattice photonic crystal fibers. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  S. Kawanishi,et al.  Optical properties of a low-loss polarization-maintaining photonic crystal fiber. , 2001, Optics express.

[18]  B. Eggleton,et al.  Enhanced Kerr Nonlinearity in Sub-wavelength Diameter As2Se3 Chalcogenide Fibre Tapers , 2007, COIN-ACOFT 2007 - Joint International Conference on the Optical Internet and the 32nd Australian Conference on Optical Fibre Technology.

[19]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[20]  P. Petropoulos,et al.  Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[21]  P. Russell,et al.  Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres. , 2004, Optics express.

[22]  Toshio Morioka,et al.  Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum , 1994 .

[23]  G. Agrawal,et al.  Raman response function for silica fibers. , 2006, Optics letters.

[24]  P. Chaudhuri,et al.  Determining Properties of Fabricated Index-Guiding Photonic Crystal Fibers Using SEM Micrograph and Mode Convergence Algorithm , 2008, Journal of Lightwave Technology.

[25]  Knight,et al.  Optical frequency synthesizer for precision spectroscopy , 2000, Physical review letters.

[26]  J. Fujimoto,et al.  Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. , 2001, Optics letters.

[27]  Niels Asger Mortensen,et al.  Effective area of photonic crystal fibers. , 2002, Optics express.

[28]  N. Picqué,et al.  Supercontinua for high-resolution absorption multiplex infrared spectroscopy. , 2007, Optics letters.

[29]  P. Russell Photonic Crystal Fibers , 2003, Science.

[30]  F. Omenetto,et al.  Spectrally smooth supercontinuum from 350 nm to 3 mum in sub-centimeter lengths of soft-glass photonic crystal fibers. , 2006, Optics express.

[31]  R. Alfano,et al.  Free-space supercontinuum coherence data packets multiplexing and demultiplexing for ultrafast laser communication , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  Kebin Shi,et al.  Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap , 2007 .

[33]  Anton Husakou,et al.  Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses , 2003 .

[34]  K. Shi,et al.  Optical scattering spectroscopy by using tightly focused supercontinuum. , 2005, Optics express.

[35]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[36]  E. Sorokin,et al.  Low-threshold supercontinuum generation from an extruded SF6 PCF using a compact Cr4+:YAG laser , 2004 .

[37]  Tzu-Ming Liu,et al.  Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser. , 2001, Optics letters.

[38]  J. Troles,et al.  Linear optical characterization of chalcogenide glasses , 2004 .

[39]  E. Sorokin,et al.  Raman effects in the infrared supercontinuum generation in soft-glass PCFs , 2007, Applied physics. B, Lasers and optics.

[40]  A. Husakou,et al.  Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. , 2001, Physical review letters.

[41]  J. Sanghera,et al.  Small-core As-Se fiber for Raman amplification. , 2003, Optics letters.