A New Correctness Criterion for The Proof Nets of Non-Commutative Multiplicative Linear Logics

This paper presents a new correctness criterion for marked Danos-Reginer graphs (D-R graphs, for short) of Multiplicative Cyclic Linear Logic MCLL and Abrusci's non-commutative Linear Logic MNLL. As a corollary we obtain an affirmative answer to the open question whether a known quadratic-time algorithm for the correctness checking of proof nets for MCLL and MNLL can be improved to linear-time.

[1]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[2]  Vincent Danos,et al.  The structure of multiplicatives , 1989, Arch. Math. Log..

[3]  David N. Yetter,et al.  Quantales and (noncommutative) linear logic , 1990, Journal of Symbolic Logic.

[4]  Paul Ruet,et al.  Non-Commutative Logic I: The Multiplicative Fragment , 1999, Ann. Pure Appl. Log..

[5]  Dirk Roorda Proof Nets for Lambek Calculus , 1992, J. Log. Comput..

[6]  V. Michele Abrusci Noncommutative proof nets , 1995 .

[7]  Stefano Guerrini,et al.  Correctness of multiplicative proof nets is linear , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[8]  Shimon Even,et al.  Graph Algorithms , 1979 .

[9]  Y. Lafont From proof-nets to interaction nets , 1995 .

[10]  Mitsuhiro Okada,et al.  A Graph-Theoretic Characterization Theorem for Multiplicative Fragment of Non-Commutative Linear Logic , 1996, Electron. Notes Theor. Comput. Sci..

[11]  Vincent Danos La Logique Linéaire appliquée à l'étude de divers processus de normalisation (principalement du Lambda-calcul) , 1990 .

[12]  J. Lambek The Mathematics of Sentence Structure , 1958 .

[13]  Paul Ruet,et al.  Non-commutative logic II: sequent calculus and phase semantics , 2000, Mathematical Structures in Computer Science.

[14]  J. Girard,et al.  Advances in Linear Logic , 1995 .