Planning for robotic exploration based on forward simulation

[1]  Alberto Quattrini Li,et al.  A semantically-informed multirobot system for exploration of relevant areas in search and rescue settings , 2016, Auton. Robots.

[2]  Frank Dellaert,et al.  Planning in the continuous domain: A generalized belief space approach for autonomous navigation in unknown environments , 2015, Int. J. Robotics Res..

[3]  Cyrill Stachniss,et al.  Predictive exploration considering previously mapped environments , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[4]  Risto Ritala,et al.  Optimal sensing via multi-armed bandit relaxations in mixed observability domains , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[5]  Frank Dellaert,et al.  Planning under uncertainty in the continuous domain: A generalized belief space approach , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[6]  George J. Pappas,et al.  Information acquisition with sensing robots: Algorithms and error bounds , 2013, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[7]  Alkis Gotovos,et al.  Fully autonomous focused exploration for robotic environmental monitoring , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[8]  Vijay Kumar,et al.  Approximate representations for multi-robot control policies that maximize mutual information , 2014, Robotics: Science and Systems.

[9]  Wolfram Burgard,et al.  Lifelong localization in changing environments , 2013, Int. J. Robotics Res..

[10]  Wolfram Burgard,et al.  Occupancy Grid Models for Robot Mapping in Changing Environments , 2012, AAAI.

[11]  Arturo Gil,et al.  A comparison of path planning strategies for autonomous exploration and mapping of unknown environments , 2012, Auton. Robots.

[12]  Simon M. Lucas,et al.  A Survey of Monte Carlo Tree Search Methods , 2012, IEEE Transactions on Computational Intelligence and AI in Games.

[13]  Joel Veness,et al.  Monte-Carlo Planning in Large POMDPs , 2010, NIPS.

[14]  Olivier Buffet,et al.  A POMDP Extension with Belief-dependent Rewards , 2010, NIPS.

[15]  Jingjing Du,et al.  An application of Kullback-Leibler divergence to active SLAM and exploration with Particle Filters , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Vincenzo Caglioti,et al.  An information-based exploration strategy for environment mapping with mobile robots , 2010, Robotics Auton. Syst..

[17]  Pedro U. Lima,et al.  A Decision-Theoretic Approach to Dynamic Sensor Selection in Camera Networks , 2009, ICAPS.

[18]  Nando de Freitas,et al.  A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot , 2009, Auton. Robots.

[19]  J. Maciejowski,et al.  Sequential Monte Carlo for Model Predictive Control , 2009 .

[20]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[21]  Alfred O. Hero,et al.  Partially Observable Markov Decision Process Approximations for Adaptive Sensing , 2009, Discret. Event Dyn. Syst..

[22]  Richard Vaughan,et al.  Massively multi-robot simulation in stage , 2008, Swarm Intelligence.

[23]  David Hsu,et al.  SARSOP: Efficient Point-Based POMDP Planning by Approximating Optimally Reachable Belief Spaces , 2008, Robotics: Science and Systems.

[24]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[25]  Francesco Amigoni,et al.  Experimental evaluation of some exploration strategies for mobile robots , 2008, 2008 IEEE International Conference on Robotics and Automation.

[26]  Joelle Pineau,et al.  Online Planning Algorithms for POMDPs , 2008, J. Artif. Intell. Res..

[27]  Wolfram Burgard,et al.  Efficient exploration of unknown indoor environments using a team of mobile robots , 2008, Annals of Mathematics and Artificial Intelligence.

[28]  Arnaud Doucet,et al.  Particle methods for maximum likelihood estimation in latent variable models , 2008, Stat. Comput..

[29]  Nicholas Roy,et al.  Trajectory Optimization using Reinforcement Learning for Map Exploration , 2008, Int. J. Robotics Res..

[30]  Javier González,et al.  A Novel Measure of Uncertainty for Mobile Robot SLAM with Rao—Blackwellized Particle Filters , 2008, Int. J. Robotics Res..

[31]  Martial Hebert,et al.  Extending the Path-Planning Horizon , 2007, Int. J. Robotics Res..

[32]  Vikram Krishnamurthy,et al.  Structured Threshold Policies for Dynamic Sensor Scheduling—A Partially Observed Markov Decision Process Approach , 2007, IEEE Transactions on Signal Processing.

[33]  Wolfram Burgard,et al.  Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters , 2007, IEEE Transactions on Robotics.

[34]  Csaba Szepesvári,et al.  Bandit Based Monte-Carlo Planning , 2006, ECML.

[35]  Joelle Pineau,et al.  Anytime Point-Based Approximations for Large POMDPs , 2006, J. Artif. Intell. Res..

[36]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[37]  Rafael Murrieta-Cid,et al.  Planning exploration strategies for simultaneous localization and mapping , 2006, Robotics Auton. Syst..

[38]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[39]  Hugh Durrant-Whyte,et al.  Simultaneous Localisation and Mapping ( SLAM ) : Part I The Essential Algorithms , 2006 .

[40]  K. Kastella,et al.  A Comparison of Task Driven and Information Driven Sensor Management for Target Tracking , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[41]  Nikos A. Vlassis,et al.  Perseus: Randomized Point-based Value Iteration for POMDPs , 2005, J. Artif. Intell. Res..

[42]  Wolfram Burgard,et al.  Information Gain-based Exploration Using Rao-Blackwellized Particle Filters , 2005, Robotics: Science and Systems.

[43]  Gamini Dissanayake,et al.  Multi-Step Look-Ahead Trajectory Planning in SLAM: Possibility and Necessity , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[44]  Nicholas Roy,et al.  Global A-Optimal Robot Exploration in SLAM , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[45]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Suboptimal Control: A Survey from ADP to MPC , 2005, Eur. J. Control.

[46]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[47]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[48]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[49]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[50]  Alexei Makarenko,et al.  Information based adaptive robotic exploration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[51]  Héctor H. González-Baños,et al.  Navigation Strategies for Exploring Indoor Environments , 2002, Int. J. Robotics Res..

[52]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[53]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[54]  Robert Givan,et al.  A framework for simulation-based network control via hindsight optimization , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[55]  Milos Hauskrecht,et al.  Value-Function Approximations for Partially Observable Markov Decision Processes , 2000, J. Artif. Intell. Res..

[56]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[57]  Brian Yamauchi,et al.  A frontier-based approach for autonomous exploration , 1997, Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97. 'Towards New Computational Principles for Robotics and Automation'.

[58]  Ieee Robotics Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97 - Towards New Computational Principles for Robotics and Automation, July 10-11, 1997, Monterey, California, USA , 1997, CIRA.

[59]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[60]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[61]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[62]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[63]  Hans P. Moravec Sensor Fusion in Certainty Grids for Mobile Robots , 1988, AI Mag..

[64]  John N. Tsitsiklis,et al.  The Complexity of Markov Decision Processes , 1987, Math. Oper. Res..

[65]  Edward J. Sondik,et al.  The Optimal Control of Partially Observable Markov Processes over a Finite Horizon , 1973, Oper. Res..

[66]  M. Degroot Optimal Statistical Decisions , 1970 .

[67]  Karl Johan Åström,et al.  Optimal control of Markov processes with incomplete state information , 1965 .

[68]  Chih-Han Yu Open-loop plans in multi-robot POMDPs , 2022 .