Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products

[1]  Zhiqiang Xiao,et al.  Simulating spatially distributed solar-induced chlorophyll fluorescence using a BEPS-SCOPE coupling framework , 2020 .

[2]  J. Wigneron,et al.  A temporal polarization ratio algorithm for calibration-free retrieval of soil moisture at L-band , 2020 .

[3]  J. Wigneron,et al.  New Ascat Vegetation Optical Depth (IB-VOD) Retrievals Over Africa , 2020, IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium.

[4]  J. Wigneron,et al.  Development and Validation of the SMOS-IC Version 2 (V2) Soil Moisture Product , 2020, IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium.

[5]  Jean-Pierre Wigneron,et al.  Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review , 2020, Remote. Sens..

[6]  Yuyu Zhou,et al.  Exploring the Use of DSCOVR/EPIC Satellite Observations to Monitor Vegetation Phenology , 2020, Remote. Sens..

[7]  Atul K. Jain,et al.  Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity , 2020, Science Advances.

[8]  W. Crow,et al.  Comparison of microwave remote sensing and land surface modeling for surface soil moisture climatology estimation , 2020 .

[9]  Lun Gao,et al.  Microwave retrievals of soil moisture and vegetation optical depth with improved resolution using a combined constrained inversion algorithm: Application for SMAP satellite , 2020 .

[10]  P. Ciais,et al.  Tropical forests did not recover from the strong 2015–2016 El Niño event , 2020, Science Advances.

[11]  Wade T. Crow,et al.  Global Estimates of Land Surface Water Fluxes from SMOS and SMAP Satellite Soil Moisture Data , 2020, Journal of Hydrometeorology.

[12]  M. Piles,et al.  Simultaneous retrieval of global scale Vegetation Optical Depth, surface roughness, and soil moisture using X-band AMSR-E observations , 2019 .

[13]  Andrew E. Suyker,et al.  Satellite L–band vegetation optical depth is directly proportional to crop water in the US Corn Belt , 2019, Remote Sensing of Environment.

[14]  D. Entekhabi,et al.  Estimation of relative canopy absorption and scattering at L-, C- and X-bands , 2019, Remote Sensing of Environment.

[15]  M. Piles,et al.  Sensitivity of L-band vegetation optical depth to carbon stocks in tropical forests: a comparison to higher frequencies and optical indices , 2019, Remote Sensing of Environment.

[16]  Martin Brandt,et al.  Trends of land surface phenology derived from passive microwave and optical remote sensing systems and associated drivers across the dry tropics 1992–2012 , 2019, Remote Sensing of Environment.

[17]  Nengcheng Chen,et al.  Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations , 2019, Remote Sensing of Environment.

[18]  S. Steele‐Dunne,et al.  Macro to micro: microwave remote sensing of plant water content for physiology and ecology. , 2019, The New phytologist.

[19]  Irene E. Teubner,et al.  A carbon sink-driven approach to estimate gross primary production from microwave satellite observations , 2019, Remote Sensing of Environment.

[20]  Arnaud Mialon,et al.  Satellite-observed pantropical carbon dynamics , 2019, Nature Plants.

[21]  Wouter Dorigo,et al.  Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology , 2019, Earth System Science Data.

[22]  W. Crow,et al.  A double instrumental variable method for geophysical product error estimation , 2019, Remote Sensing of Environment.

[23]  C. Tucker,et al.  Changes in rainfall distribution promote woody foliage production in the Sahel , 2019, Communications Biology.

[24]  Irene E. Teubner,et al.  The Global Long-term Microwave Vegetation Optical Depth Climate Archive VODCA , 2019, Earth System Science Data.

[25]  P. Richaume,et al.  Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ISMN ground-based measurements , 2019, Remote Sensing of Environment.

[26]  Igor V. Savin,et al.  Experimental Analysis and Empirical Model of the Complex Permittivity of Five Organic Soils at 1.4 GHz in the Temperature Range From −30 °C to 25 °C , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[27]  D. Entekhabi,et al.  Moisture pulse-reserve in the soil-plant continuum observed across biomes , 2018, Nature Plants.

[28]  P. Ciais,et al.  Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite , 2018, Nature Ecology & Evolution.

[29]  A. Al Bitar,et al.  An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa , 2018, Biogeosciences.

[30]  Arnaud Mialon,et al.  SMOS-IC: Current Status and Overview of Soil Moisture and VOD Applications , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[31]  Adriano Camps,et al.  L-band vegetation optical depth seasonal metrics for crop yield assessment , 2018, Remote Sensing of Environment.

[32]  Yi Y. Liu,et al.  Enhanced canopy growth precedes senescence in 2005 and 2010 Amazonian droughts , 2018, Remote Sensing of Environment.

[33]  Arnaud Mialon,et al.  Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands , 2018, Nature Ecology & Evolution.

[34]  W. Crow,et al.  The Error Structure of the SMAP Single and Dual Channel Soil Moisture Retrievals , 2017, Geophysical research letters.

[35]  J. Watts,et al.  A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations , 2017 .

[36]  Arnaud Mialon,et al.  A new calibration of the effective scattering albedo and soil roughness parameters in the SMOS SM retrieval algorithm , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[37]  Klaus Scipal,et al.  Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions , 2017 .

[38]  Brian K. Hornbuckle,et al.  Soil surface roughness observed during SMAPVEX16-IA and its potential consequences for SMOS and SMAP , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[39]  Dara Entekhabi,et al.  L-band vegetation optical depth and effective scattering albedo estimation from SMAP. , 2017 .

[40]  A. Al Bitar,et al.  Modelling the Passive Microwave Signature from Land Surfaces: A Review of Recent Results and Application to the L-Band SMOS SMAP Soil Moisture Retrieval Algorithms , 2017 .

[41]  Arnaud Mialon,et al.  SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product , 2017, Remote. Sens..

[42]  Jean-Pierre Wigneron,et al.  The merging of radiative transfer based surface soil moisture data from SMOS and AMSR-E , 2017 .

[43]  Pierre Gentine,et al.  Global variations in ecosystem‐scale isohydricity , 2017, Global change biology.

[44]  Arnaud Mialon,et al.  Global-scale surface roughness effects at L-band as estimated from SMOS observations. , 2016 .

[45]  Martin Brandt,et al.  Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel , 2016 .

[46]  Wade T. Crow,et al.  Estimating error cross‐correlations in soil moisture data sets using extended collocation analysis , 2016 .

[47]  P. M. Salgado-Hernanz,et al.  Roughness and vegetation parameterizations at L-band for soil moisture retrievals over a vineyard field , 2015 .

[48]  C. Bettigole,et al.  Mapping tree density at a global scale , 2015, Nature.

[49]  Arnaud Mialon,et al.  Evaluation of multi-frequency bare soil microwave reflectivity models , 2015 .

[50]  Matthew F. McCabe,et al.  Recent reversal in loss of global terrestrial biomass , 2015 .

[51]  John S. Kimball,et al.  Satellite Microwave Retrieval of Total Precipitable Water Vapor and Surface Air Temperature Over Land From AMSR2 , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Ramakrishna R. Nemani,et al.  Numerical Terradynamic Simulation Group 12-2014 Asynchronous Amazon forest canopy phenology indicates adaptation to both water and light availability , 2018 .

[53]  Damien Sulla-Menashe,et al.  A Global Land Cover Climatology Using MODIS Data , 2014 .

[54]  A. Al Bitar,et al.  Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data Assimilation System estimates , 2014, Remote Sensing of Environment.

[55]  Simonetta Paloscia,et al.  Remote monitoring of soil moisture using passive microwave-based techniques — Theoretical basis and overview of selected algorithms for AMSR-E , 2014 .

[56]  Matthew O. Jones,et al.  Satellite microwave detection of boreal forest recovery from the extreme 2004 wildfires in Alaska and Canada , 2013, Global change biology.

[57]  Takashi Maeda,et al.  Status of AMSR2 instrument on GCOM-W1 , 2012, Asia-Pacific Environmental Remote Sensing.

[58]  Eric F. Wood,et al.  Multi-sensor derivation of regional vegetation fractional cover in Africa , 2012 .

[59]  G. Asner,et al.  High-resolution mapping of forest carbon stocks in the Colombian Amazon , 2012 .

[60]  Brian K. Hornbuckle,et al.  Initial Validation of SMOS Vegetation Optical Thickness in Iowa , 2012, IEEE Geoscience and Remote Sensing Letters.

[61]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[62]  Yi Y. Liu,et al.  Global long‐term passive microwave satellite‐based retrievals of vegetation optical depth , 2011 .

[63]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[64]  Matthew O. Jones,et al.  Satellite passive microwave remote sensing for monitoring global land surface phenology , 2011 .

[65]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[66]  Yann Kerr,et al.  The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle , 2010, Proceedings of the IEEE.

[67]  Eric F. Wood,et al.  Satellite Microwave Remote Sensing of Daily Land Surface Air Temperature Minima and Maxima From AMSR-E , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[68]  Jean-Pierre Wigneron,et al.  Observations and Modeling of a Pine Forest Floor at L-Band , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[69]  R. Jeu,et al.  Land surface temperature from Ka band (37 GHz) passive microwave observations , 2009 .

[70]  R. Jeu,et al.  Multisensor historical climatology of satellite‐derived global land surface moisture , 2008 .

[71]  Jan Vanderborght,et al.  Measured microwave radiative transfer properties of a deciduous forest canopy , 2007 .

[72]  Albert I. J. M. van Dijk,et al.  TRMM‐TMI satellite observed soil moisture and vegetation density (1998–2005) show strong connection with El Niño in eastern Australia , 2007 .

[73]  Y. Kerr,et al.  Estimates of surface soil moisture under grass covers using L-band radiometry , 2007 .

[74]  Y. Kerr,et al.  L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields , 2007 .

[75]  Yann Kerr,et al.  Impact of rain interception by vegetation and mulch on the L-band emission of natural grass , 2006 .

[76]  Richard de Jeu,et al.  Analytical derivation of the vegetation optical depth from the microwave polarization difference index , 2005, IEEE Geoscience and Remote Sensing Letters.

[77]  Martha C. Anderson,et al.  Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans , 2004 .

[78]  V. H. Kaupp,et al.  Generalized refractive mixing dielectric model for moist soils , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[79]  Naoto Matsuura,et al.  DEVELOPMENT OF AN ADVANCED MICROWAVE SCANNING RADIOMETER (AMSR-E) ALGORITHM FOR SOIL MOISTURE AND VEGETATION WATER CONTENT , 2004 .

[80]  Thomas J. Jackson,et al.  Soil moisture retrieval from AMSR-E , 2003, IEEE Trans. Geosci. Remote. Sens..

[81]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[82]  Yann Kerr,et al.  Two-Dimensional Microwave Interferometer Retrieval Capabilities over Land Surfaces (SMOS Mission) , 2000 .

[83]  T. Jackson,et al.  III. Measuring surface soil moisture using passive microwave remote sensing , 1993 .

[84]  T. Schmugge,et al.  Vegetation effects on the microwave emission of soils , 1991 .

[85]  T. Mo,et al.  A model for microwave emission from vegetation‐covered fields , 1982 .

[86]  B. Choudhury,et al.  Remote sensing of soil moisture content over bare field at 1.4 GHz frequency , 1981 .

[87]  T. Schmugge,et al.  An Empirical Model for the Complex Dielectric Permittivity of Soils as a Function of Water Content , 1980, IEEE Transactions on Geoscience and Remote Sensing.

[88]  E. Hovmöller,et al.  The Trough-and-Ridge diagram , 1949 .

[89]  F. Frappart,et al.  Compared performances of SMOS-IC soil moisture and vegetation optical depth retrievals based on Tau-Omega and Two-Stream microwave emission models , 2020 .

[90]  Arnaud Mialon,et al.  Comparison of SMOS and AMSR-E vegetation optical depth to four MODIS-based vegetation indices , 2016 .

[91]  Dara Entekhabi,et al.  Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized L-band radiometer observations , 2016 .

[92]  John S. Kimball,et al.  Passive Microwave Remote Sensing of Soil Moisture Based on Dynamic Vegetation Scattering Properties for AMSR-E , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[93]  Arnaud Mialon,et al.  Comparison between SMOS Vegetation Optical Depth products and MODIS vegetation indices over crop zones of the USA , 2014 .

[94]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[95]  E. H. Simpson Measurement of Diversity , 1949, Nature.