Phase synchronization: Theory and applications

The state-of-the-art of the phase synchronization theory was reviewed. Consideration was given to its applications to the synchronous and induction electrical motors, phase locked loops, and autosynchronization of the unbalanced rotors. The Yakubovich-Kalman frequency theorem was widely used to study the phase synchronization systems for global stability.

[1]  C. Böhm Nuovi criteri di esistenza di soluzioni periodiche di una nota equazione differenziale non lineare , 1953 .

[2]  G. Seifert On the existence of certain solutions of a nonlinear differential equation , 1952 .

[3]  H. Osborne,et al.  Stability Analysis of an Nth Power Digital Phase-Locked Loop - Part I: First-Order DPLL , 1980, IEEE Transactions on Communications.

[4]  Andrew J. Viterbi,et al.  Principles of coherent communication , 1966 .

[5]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[6]  Design of phase-locked loops for digital signal processors , 2005 .

[7]  W. Hayes,et al.  On the equation for a damped pendulum under constant torque , 1953 .

[8]  W.C. Lindsey,et al.  A survey of digital phase-locked loops , 1981, Proceedings of the IEEE.

[9]  S. Lefschetz Stability of nonlinear control systems , 1966 .

[10]  William C. Lindsey,et al.  SYNCHRONIZATION SYSTEMS in Communication and Control , 1972 .

[11]  Andrew S. Tanenbaum,et al.  Structured Computer Organization , 1976 .

[12]  G. Leonov,et al.  Frequency Methods in Oscillation Theory , 1995 .

[13]  Ilya Blekhman,et al.  Selected Topics in Vibrational Mechanics , 2004 .

[14]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[15]  Garth Nash Phase-Locked Loop Design Fundamentals , 2006 .

[16]  G. Leonov,et al.  Frequency-Domain Methods for Nonlinear Analysis: Theory and Applications , 1996 .

[17]  G. Leonov A class of dynamical systems with cylindrical phase spaces , 1976 .

[18]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[19]  G. P. Szegö,et al.  Qualitative analysis by modern methods of a stability problem in power-system analysis☆ , 1970 .

[20]  Paul Horowitz,et al.  The Art of Electronics , 1980 .

[21]  A. L. Fradkov,et al.  On General Definitions of Synchronization , 2004 .

[22]  Edward A. Lee,et al.  DSP Processor Fundamentals , 1997 .

[23]  S.C. Gupta,et al.  Phase-locked loops , 1975, Proceedings of the IEEE.

[24]  Alexander L. Fradkov,et al.  On self-synchronization and controlled synchronization , 1997 .

[25]  V. Yakubovich,et al.  Stability of Stationary Sets in Control Systems With Discontinuous Nonlinearities , 2004, IEEE Transactions on Automatic Control.

[26]  Gennady A. Leonov,et al.  Non-local methods for pendulum-like feedback systems , 1992 .

[27]  Erik J. Noldus,et al.  New direct lyapunov-type method for studying synchronization problems , 1977, Autom..

[28]  L. Amerio Determinazione delle condizioni di stabilità per gli integrali di un'equazione interessante l'elettrotecnica , 1949 .

[29]  Steven W. Smith,et al.  The Scientist and Engineer's Guide to Digital Signal Processing , 1997 .

[30]  Alexander L. Fradkov,et al.  Self-synchronization and controlled synchronization: general definition and example design , 2002, Math. Comput. Simul..

[31]  Gennady A. Leonov,et al.  Stability and bifurcations of Phase-Locked Loops for Digital Signal Processors , 2005, Int. J. Bifurc. Chaos.

[32]  Arkady Pikovsky,et al.  A universal concept in nonlinear sciences , 2006 .