SDSS QUASARS IN THE WISE PRELIMINARY DATA RELEASE AND QUASAR CANDIDATE SELECTION WITH OPTICAL/INFRARED COLORS

We present a catalog of 37,842 quasars in the Sloan Digital Sky Survey (SDSS) Data Release 7, which have counterparts within 6'' in the Wide-field Infrared Survey Explorer (WISE) Preliminary Data Release. The overall WISE detection rate of the SDSS quasars is 86.7%, and it decreases to less than 50.0% when the quasar magnitude is fainter than i = 20.5. We derive the median color-redshift relations based on this SDSS-WISE quasar sample and apply them to estimate the photometric redshifts of the SDSS-WISE quasars. We find that by adding the WISE W1- and W2-band data to the SDSS photometry we can increase the photometric redshift reliability, defined as the percentage of sources with photometric and spectroscopic redshift difference less than 0.2, from 70.3% to 77.2%. We also obtain the samples of WISE-detected normal and late-type stars with SDSS spectroscopy, and present a criterion in the z – W1 versus g – z color-color diagram, z – W1 > 0.66(g – z) + 2.01, to separate quasars from stars. With this criterion we can recover 98.6% of 3089 radio-detected SDSS-WISE quasars with redshifts less than four and overcome the difficulty in selecting quasars with redshifts between 2.2 and 3 from SDSS photometric data alone. We also suggest another criterion involving the WISE color only, W1 – W2 > 0.57, to efficiently separate quasars with redshifts less than 3.2 from stars. In addition, we compile a catalog of 5614 SDSS quasars detected by both WISE and UKIDSS surveys and present their color-redshift relations in the optical and infrared bands. By using the SDSS ugriz, UKIDSS, YJHK, and WISE W1- and W2-band photometric data, we can efficiently select quasar candidates and increase the photometric redshift reliability up to 87.0%. We discuss the implications of our results on the future quasar surveys. An updated SDSS-WISE quasar catalog consisting of 101,853 quasars with the recently released WISE all-sky data is also provided.

[1]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[2]  Adam D. Myers,et al.  THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE , 2011, 1105.0606.

[3]  Cambridge,et al.  Luminous K-band Selected Quasars from UKIDSS , 2008, 0802.3650.

[4]  Cambridge,et al.  The UKIRT Infrared Deep Sky Survey ZY JHK photometric system: passbands and synthetic colours , 2006, astro-ph/0601592.

[5]  H. E. Smith,et al.  Obscuration in Extremely Luminous Quasars , 2007, 0709.4458.

[6]  et al,et al.  The Discovery of a Luminous z = 5.80 Quasar from the Sloan Digital Sky Survey , 2000, astro-ph/0005414.

[7]  R. Becker,et al.  The FIRST-2MASS Red Quasar Survey , 2007, 0706.3222.

[8]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[9]  Yue Shen,et al.  SPACE DENSITY OF OPTICALLY SELECTED TYPE 2 QUASARS , 2008, 0801.1115.

[10]  M. Schmidt,et al.  3C 273 : A Star-Like Object with Large Red-Shift , 1963, Nature.

[11]  G. Wilson,et al.  Obscured and unobscured active galactic nuclei in the Spitzer Space Telescope First Look Survey , 2004 .

[12]  S. C. Keller,et al.  The SkyMapper Telescope and The Southern Sky Survey , 2007, Publications of the Astronomical Society of Australia.

[13]  Xu Kong,et al.  Eight new quasars discovered by the Guoshoujing Telescope (LAMOST) in one extragalactic field , 2010, 1006.0143.

[14]  Robert Lupton,et al.  A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements , 1999, astro-ph/9903081.

[15]  P. Hall,et al.  Quasars in the 2MASS Second Incremental Data Release , 2001, astro-ph/0101270.

[16]  Scott M. Croom,et al.  The 2dF QSO Redshift Survey — I. The optical luminosity function of quasi-stellar objects , 2000 .

[17]  Fermilab,et al.  Photometric Redshifts of Quasars , 2001, astro-ph/0106038.

[18]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[19]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[20]  Scott M. Croom,et al.  The 2dF QSO Redshift Survey — III. The input catalogue , 2005 .

[21]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[22]  Xue-Bing Wu,et al.  Quasar candidate selection and photometric redshift estimation based on SDSS and UKIDSS data , 2010, 1004.1756.

[23]  S. Dye,et al.  The WFCAM Science Archive , 2006, 0711.3593.

[24]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release , 2007, 0704.0806.

[25]  Xu Kong,et al.  A very bright ( i = 16.44) quasar in the ‘redshift desert’ discovered by the Guoshoujing Telescope (LAMOST) , 2010, 1005.5499.

[26]  et al,et al.  A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6 , 2001, astro-ph/0108063.

[27]  Tamas Budavari,et al.  An Empirical Algorithm for Broadband Photometric Redshifts of Quasars from the Sloan Digital Sky Survey , 2004, astro-ph/0408504.

[28]  Wei Zhang,et al.  Color-Redshift Relations and Photometric Redshift Estimations of Quasars in Large Sky Surveys , 2004 .

[29]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[30]  Red and Reddened Quasars in the Sloan Digital Sky Survey , 2003, astro-ph/0305305.

[31]  Ran Wang,et al.  DISCOVERING THE MISSING 2.2 < z < 3 QUASARS BY COMBINING OPTICAL VARIABILITY AND OPTICAL/NEAR-INFRARED COLORS , 2011, 1107.0646.

[32]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[33]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[34]  S. J. Warren,et al.  The KX method for producing K-band flux-limited samples of quasars , 2000 .

[35]  Xiangqun Cui,et al.  Large-sky-area multiobject fiber spectroscopic telescope (LAMOST) and its key technology , 1998, Astronomical Telescopes and Instrumentation.

[36]  A. Szalay,et al.  THE SLOAN DIGITAL SKY SURVEY QUASAR CATALOG. V. SEVENTH DATA RELEASE , 2010, 1004.1167.

[37]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[38]  Scott M. Croom,et al.  The 2dF QSO Redshift Survey - I. The Optical QSO Luminosity Function , 2000 .

[39]  Arjun Dey,et al.  Submitted to the Astrophysical Journal Letters Mid-Infrared Selection of Active Galaxies , 2004 .

[40]  Xiaohui Fan Simulation of Stellar Objects in SDSS Color Space , 1999 .