Genetic optimisation of the image feature extraction process

Abstract The transformation of signals to symbols is critically important if higher levels of image recognition are to use them as building blocks for scene interpretation. In this paper, we investigate the optimisation of the feature extraction chain by using Genetic Algorithms. The fitness function is a performance measure which reflects the quality of an extracted set of features. We will present some results and compare them with a Hill-Climbing optimisation approach.

[1]  Hideo Saito,et al.  Application of genetic algorithms to stereo matching of images , 1995, Pattern Recognit. Lett..

[2]  Bruce A. Draper,et al.  Knowledge-directed vision: control, learning, and integration , 1996, Proc. IEEE.

[3]  Suchendra M. Bhandarkar,et al.  An edge detection technique using genetic algorithm-based optimization , 1994, Pattern Recognit..

[4]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Josef Kittler,et al.  A Performance Measure for Boundary Detection Algorithms , 1996, Comput. Vis. Image Underst..

[6]  Evelyne Lutton,et al.  A genetic algorithm for the detection of 2D geometric primitives in images , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[7]  Lalit M. Patnaik,et al.  Adaptive probabilities of crossover and mutation in genetic algorithms , 1994, IEEE Trans. Syst. Man Cybern..

[8]  Joel L. Davis,et al.  Large-Scale Neuronal Theories of the Brain , 1994 .

[9]  Josef Kittler,et al.  A Hough transform algorithm with a 2D hypothesis testing kernel , 1993 .

[10]  Josef Kittler,et al.  Optimal Edge Detectors for Ramp Edges , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Earl K. Miller,et al.  The interaction of neural systems for attention and memory , 1994 .

[12]  V. Bruce,et al.  Visual Perception: Physiology, Psychology and Ecology , 1985 .

[13]  Sankar K. Pal,et al.  Genetic algorithms for optimal image enhancement , 1994, Pattern Recognit. Lett..

[14]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[15]  Philippe Andrey,et al.  Unsupervised image segmentation using a distributed genetic algorithm , 1994, Pattern Recognit..

[16]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[17]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[18]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[19]  Martin D. Levine,et al.  Geometric Primitive Extraction Using a Genetic Algorithm , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Jan-Olof Eklundh,et al.  A head-eye system - Analysis and design , 1992, CVGIP Image Underst..