Identification of Binding Sites for Efflux Pump Inhibitors of the AcrAB-TolC Component AcrA.

[1]  Rommie E. Amaro,et al.  Ensemble Docking in Drug Discovery. , 2018, Biophysical journal.

[2]  H. Zgurskaya,et al.  Bifurcation kinetics of drug uptake by Gram-negative bacteria , 2017, PloS one.

[3]  Jerry M. Parks,et al.  Identification and Structure-Activity Relationships of Novel Compounds that Potentiate the Activities of Antibiotics in Escherichia coli. , 2017, Journal of medicinal chemistry.

[4]  W. Chiu,et al.  An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump , 2017, eLife.

[5]  Julie L. Chaney,et al.  Reviving Antibiotics: Efflux Pump Inhibitors That Interact with AcrA, a Membrane Fusion Protein of the AcrAB-TolC Multidrug Efflux Pump. , 2017, ACS infectious diseases.

[6]  B. L. de Groot,et al.  CHARMM36m: an improved force field for folded and intrinsically disordered proteins , 2016, Nature Methods.

[7]  Jon W. Weeks,et al.  Breaking the Permeability Barrier of Escherichia coli by Controlled Hyperporination of the Outer Membrane , 2016, Antimicrobial Agents and Chemotherapy.

[8]  H. Shigematsu,et al.  Pseudoatomic Structure of the Tripartite Multidrug Efflux Pump AcrAB-TolC Reveals the Intermeshing Cogwheel-like Interaction between AcrA and TolC. , 2016, Structure.

[9]  John J. Irwin,et al.  ZINC 15 – Ligand Discovery for Everyone , 2015, J. Chem. Inf. Model..

[10]  B. Luisi,et al.  Assembly and operation of bacterial tripartite multidrug efflux pumps. , 2015, Trends in microbiology.

[11]  Dima Kozakov,et al.  The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins , 2015, Nature Protocols.

[12]  A. Roitberg,et al.  Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. , 2015, Journal of chemical theory and computation.

[13]  Kangseok Lee,et al.  Structure of the tripartite multidrug efflux pump AcrAB-TolC suggests an alternative assembly mode. , 2015, Molecules and cells.

[14]  I. Kuznetsova,et al.  Fluorescence of Dyes in Solutions with High Absorbance. Inner Filter Effect Correction , 2014, PloS one.

[15]  Wah Chiu,et al.  Structure of the AcrAB-TolC multidrug efflux pump , 2014, Nature.

[16]  Jeremy C. Smith,et al.  VinaMPI: Facilitating multiple receptor high‐throughput virtual docking on high‐performance computers , 2013, J. Comput. Chem..

[17]  Kangnian Fan,et al.  Interdomain flexibility and pH-induced conformational changes of AcrA revealed by molecular dynamics simulations. , 2012, The journal of physical chemistry. B.

[18]  Lorenzo Stella,et al.  Fluorescence quenching and ligand binding: A critical discussion of a popular methodology , 2011 .

[19]  H. Zgurskaya,et al.  Sequential mechanism of assembly of multidrug efflux pump AcrAB-TolC. , 2011, Chemistry & biology.

[20]  Hiroshi Nikaido,et al.  Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli , 2010, Proceedings of the National Academy of Sciences.

[21]  H. Zgurskaya,et al.  Kinetic control of TolC recruitment by multidrug efflux complexes , 2009, Proceedings of the National Academy of Sciences.

[22]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[23]  H. Zgurskaya,et al.  The C-Terminal Domain of AcrA Is Essential for the Assembly and Function of the Multidrug Efflux Pump AcrAB-TolC , 2009, Journal of bacteriology.

[24]  Colin Hughes,et al.  The assembled structure of a complete tripartite bacterial multidrug efflux pump , 2009, Proceedings of the National Academy of Sciences.

[25]  Z. Darżynkiewicz,et al.  Interaction of human decapping scavenger with 5′ mRNA cap analogues: structural requirements for catalytic activity , 2007 .

[26]  E. Bokma,et al.  A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps , 2007, Proceedings of the National Academy of Sciences.

[27]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[28]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[29]  H. Zgurskaya,et al.  Conformational flexibility in the multidrug efflux system protein AcrA. , 2006, Structure.

[30]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[31]  S. Levy,et al.  Antibacterial resistance worldwide: causes, challenges and responses , 2004, Nature Medicine.

[32]  Jeremy C. Smith,et al.  Fluorescence quenching of dyes by tryptophan: interactions at atomic detail from combination of experiment and computer simulation. , 2003, Journal of the American Chemical Society.

[33]  H. Zgurskaya,et al.  Chimeric Analysis of the Multicomponent Multidrug Efflux Transporters from Gram-Negative Bacteria , 2002, Journal of bacteriology.

[34]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[35]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[36]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[37]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[38]  S. Nosé,et al.  Constant pressure molecular dynamics for molecular systems , 1983 .

[39]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[40]  J. Keizer Additions and Corrections - Nonlinear Fluorescence Quenching and the Origin of Positive Curvature in Stern-Volmer Plots , 1983 .

[41]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[42]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[43]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.