Design of a Novel Spectral Albedometer for Validating the MODerate Resolution Imaging Spectroradiometer Spectral Albedo Product

Land surface shortwave broadband albedo is a key parameter in general circulation models and surface energy budget models. Multispectral satellite data are typically used to generate broadband albedo products in a three-step process: atmospheric correction, for converting the top-of-atmosphere observations to surface directional reflectance; angular modeling, for converting the surface directional reflectance to spectral albedo of each individual band; and finally, narrowband-to-broadband conversion, for transforming the spectral albedos to broadband albedos. Spectroradiometers can be used for validating surface directional reflectance products and pyranometers or broadband albedometers, for validating broadband albedo products, but spectral albedo products are rarely validated using ground measurements. In this study, we designed a new type of albedometer that can measure spectral albedos. It consists of multiple interference filters and a silicon detector, for measuring irradiance from 400–1100 nm. The linearity of the sensors is 99%, and the designed albedometer exhibits consistency up to 0.993, with a widely-used commercial instrument. A field experiment for measuring spectral albedo of grassland using this new albedometer was conducted in Yudaokou, China and the measurements are used for validating the MODerate Resolution Imaging Spectroradiometer (MODIS) spectral albedos. The results show that the biases of the MODIS spectral albedos of the first four bands are −0.0094, 0.0065, 0.0159, and −0.0001, respectively. This new instrument provides an effective technique for validating spectral albedos of any satellite sensor in this spectral range, which is critical for improving satellite broadband albedo products.

[1]  Laurent Arnaud,et al.  Development and calibration of an automatic spectral albedometer to estimate near-surface snow SSA time series , 2016 .

[2]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[3]  U. Feister,et al.  SPECTRAL ALBEDO MEASUREMENTS IN THE UV and VISIBLE REGION OVER DIFFERENT TYPES OF SURFACES , 1995 .

[4]  A. Ångström The Albedo of Various Surfaces of Ground , 1925 .

[5]  Alan H. Strahler,et al.  A Comparison of Satellite-Derived Spectral Albedos to Ground-Based Broadband Albedo Measurements Modeled to Satellite Spatial Scale for a Semidesert Landscape , 2000 .

[6]  Nigel P. Fox,et al.  Characterisation of the HDRF (as a proxy for BRDF) of snow surfaces at Dome C, Antarctica, for the inter-calibration and inter-comparison of satellite optical data , 2015 .

[7]  Crystal B. Schaaf,et al.  Spatial scaling of reflectance and surface albedo over a mixed-use, temperate forest landscape during snow-covered periods , 2015 .

[8]  J. Michalsky,et al.  Cosine response characteristics of some radiometric and photometric sensors , 1995 .

[9]  S. Warren,et al.  Spectral Bidirectional Reflectance of Antarctic Snow: Measurements and Parameterization , 2006 .

[10]  S. Liang,et al.  Evaluating land surface albedo estimation from Landsat MSS, TM, ETM +, and OLI data based on the unified direct estimation approach , 2018 .

[11]  Y. Shuai Tracking daily land surface albedo and reflectance anisotropy with moderate-resolution imaging spectroradiometer (MODIS) , 2010 .

[12]  Ernesto Lopez-Baeza,et al.  Narrow-band to broad-band conversion for Meteosat-visiible channel and broad-band albedo using both AVHRR-1 and -2 channels , 1995 .

[13]  Chad J. Shuey,et al.  Validating MODIS land surface reflectance and albedo products: methods and preliminary results , 2002 .

[14]  Jerry Y. Pan,et al.  Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network , 2012 .

[15]  Shunlin Liang,et al.  Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product , 2014 .

[16]  Shunlin Liang,et al.  Direct estimation of land surface albedo from VIIRS data: Algorithm improvement and preliminary validation , 2013 .

[17]  Alan H. Strahler,et al.  Evaluation of Moderate Resolution Imaging Spectroradiometer land surface visible and shortwave albedo products at FLUXNET sites , 2010 .

[18]  Shunlin Liang,et al.  Direct Estimation of Land Surface Albedo From Simultaneous MISR Data , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Jay H. Lowry,et al.  Optical characteristics of Teflon AF fluoroplastic materials , 1992 .

[20]  José Manuel Andújar Márquez,et al.  A New and Inexpensive Pyranometer for the Visible Spectral Range , 2009, Sensors.

[21]  R. Dickinson Land Surface Processes and Climate—Surface Albedos and Energy Balance , 1983 .

[22]  Mathias Disney,et al.  Deriving albedo maps for HAPEX-Sahel from ASAS data using kernel-driven BRDF models , 1999 .

[23]  C. Woodcock,et al.  Evaluation of Moderate-resolution Imaging Spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra , 2012 .

[24]  D. E. Williamson Infra-Red Interference Filter Used in Calibration , 1949 .

[25]  C. Woodcock,et al.  Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods , 2014 .

[26]  Zoe Courville,et al.  Comparing MODIS daily snow albedo to spectral albedo field measurements in Central Greenland , 2014 .

[27]  D. Diner,et al.  Surface albedo retrieval from Meteosat: 1. Theory , 2000 .

[28]  T. Frach,et al.  The digital Silicon Photomultiplier — A novel sensor for the detection of scintillation light , 2009, 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC).

[29]  José González-Piqueras,et al.  A New Method for the Estimation of Broadband Apparent Albedo Using Hyperspectral Airborne Hemispherical Directional Reflectance Factor Values , 2016, Remote. Sens..

[30]  IC Ndukwe Measurement of solar energy radiation at Okigwe using silicon solar cell , 2000 .

[31]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[32]  Xubin Zeng,et al.  Evaluation of snow albedo in land models for weather and climate studies , 2010 .

[33]  Jiemin Wang,et al.  Intercomparison of surface energy flux measurement systems used during the HiWATER‐MUSOEXE , 2013 .

[34]  D. Tanré,et al.  ALGORITHM FOR REMOTE SENSING OF TROPOSPHERIC AEROSOL FROM MODIS , 1998 .

[35]  Jie Song,et al.  An Improved Method to Derive Surface Albedo from Narrowband AVHRR Satellite Data: Narrowband to Broadband Conversion , 1999 .

[36]  Daryl R. Myers,et al.  Silicon-photodiode pyranometers: operational characteristics, historical experiences, and new calibration procedures , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[37]  E. S. Trickett,et al.  An improved pyranometer , 1982 .

[38]  Gert König-Langlo,et al.  Measurements of spectral snow albedo at Neumayer, Antarctica , 2006 .

[39]  S. Warren,et al.  Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near‐infrared wavelengths , 1994 .

[40]  S. Liang Narrowband to broadband conversions of land surface albedo I Algorithms , 2001 .

[41]  Crystal B. Schaaf,et al.  Estimating daily mean land surface albedo from MODIS data , 2015 .

[42]  Xiuji Zhou,et al.  Validation of the MODIS global land surface albedo product using ground measurements in a semidesert region on the Tibetan Plateau , 2004 .

[43]  A. F. Beaubien,et al.  Investigations in Pyranometer Design , 1998 .