GENERIC WELL-POSEDNESS FOR PERTURBED OPTIMIZATION PROBLEMS IN BANACH SPACES

Let $X$ be a Banach space and $Z$ a relatively weakly compact subset of $X$. Let $J: Z\rightarrow\mathbb{R}$ be a upper semicontinuous function bounded from above and $p\geq1$. This paper is concerned with the perturbed optimization problem of finding $z_0\in Z$ such that $\|x-z_0\|^p+J(z_0)=\sup_{z\in Z}\{\|x-z\|^p+J(z)\}$, which is denoted by $\max_J(x,Z)$. We prove in the present paper that if $X$ is Kadec w.r.t. $Z$, then the set of all $x\in X$ such that the problem $\max_J(x,Z)$ is generalized well-posed is a dense $G_\delta$-subset of $X$. If $X$ is additionally $J$-strictly convex w.r.t. $Z$ and $p>1$, we prove that the set of all $x\in X$ such that the problem $\max_J(x,Z)$ is well-posed is a dense $G_\delta$-subset of $X$.

[1]  William B. Johnson,et al.  Factoring weakly compact operators , 1974 .

[2]  Ka-Sing Lau Farthest points in weakly compact sets , 1975 .

[3]  Michael Edelstein Farthest points of sets in uniformly convex banach spaces , 1966 .

[4]  J. Diestel Geometry of Banach Spaces: Selected Topics , 1975 .

[5]  David Preiss,et al.  Differentiability of Lipschitz functions on Banach spaces , 1990 .

[6]  Chong Li,et al.  Well-posedness of a class of perturbed optimization problems in Banach spaces ✩ , 2008 .

[7]  E. Asplund Farthest points in reflexive locally uniformly rotund Banach spaces , 1966 .

[8]  S. Cobzaş,et al.  Generic Existence of Solutions for Some Perturbed Optimization Problems , 2000 .

[9]  J. P. Revalski,et al.  Constrained convex optimization problems-well-posedness and stability * , 1994 .

[10]  T. Zolezzi,et al.  Well-Posed Optimization Problems , 1993 .

[11]  Jacques Baranger Norm Perturbation of Supremum Problems , 1973, Optimization Techniques.

[12]  R. Temam,et al.  Nonconvex Optimization Problems Depending on a Parameter , 1975 .

[13]  D. Braess Nonlinear Approximation Theory , 1986 .

[14]  Chong Li,et al.  Porosity of perturbed optimization problems in Banach spaces , 2006 .

[15]  On the continuity of the minima for a family of constrained optimization problems , 1985 .

[16]  Chong Li,et al.  Existence and porosity for a class of perturbed optimization problems in Banach spaces , 2007 .

[17]  Problemes D’optimisation Non Convexe Dependants D’un Parametre (II) , 1974 .

[18]  Renxing Ni Generic solutions for some perturbed optimization problem in non-reflexive Banach spaces , 2005 .

[19]  Robert E. Megginson An Introduction to Banach Space Theory , 1998 .

[20]  Gérard Lebourg Perturbed optimization problems in Banach spaces , 1979 .

[21]  M. F. Bidaut Existence theorems for usual and approximate solutions of optimal control problems , 1975 .