Maximizing Sequence-Submodular Functions and its Application to Online Advertising

Motivated by applications in online advertising, we consider a class of maximization problems where the objective is a function of the sequence of actions as well as the running duration of each action. For these problems, we introduce the concepts of \emph{sequence-submodularity} and \emph{sequence-monotonicity} which extend the notions of submodularity and monotonicity from functions defined over sets to functions defined over sequences. We establish that if the objective function is sequence-submodular and sequence-non-decreasing, then there exists a greedy algorithm that achieves $1-1/e$ of the optimal solution. We apply our algorithm and analysis to two applications in online advertising: online ad allocation and query rewriting. We first show that both problems can be formulated as maximizing non-decreasing sequence-submodular functions. We then apply our framework to these two problems, leading to simple greedy approaches with guaranteed performances. In particular, for online ad allocation problem the performance of our algorithm is $1-1/e$, which matches the best known existing performance, and for query rewriting problem the performance of our algorithm is $1- 1/e^{1-1/e}$ which improves upon the best known existing performance in the literature.

[1]  L. Wolsey Maximising Real-Valued Submodular Functions: Primal and Dual Heuristics for Location Problems , 1982, Math. Oper. Res..

[2]  Olgica Milenkovic,et al.  Inhomogeneous Hypergraph Clustering with Applications , 2017, NIPS.

[3]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[4]  Benjamin Rey,et al.  Generating query substitutions , 2006, WWW '06.

[5]  Richard M. Karp,et al.  An optimal algorithm for on-line bipartite matching , 1990, STOC '90.

[6]  Andreas Krause,et al.  Distributed Submodular Maximization , 2014, J. Mach. Learn. Res..

[7]  Zheng Wen,et al.  Adaptive Submodular Maximization in Bandit Setting , 2013, NIPS.

[8]  Edwin K. P. Chong,et al.  String Submodular Functions With Curvature Constraints , 2013, IEEE Transactions on Automatic Control.

[9]  Amin Karbasi,et al.  Do Less, Get More: Streaming Submodular Maximization with Subsampling , 2018, NeurIPS.

[10]  Nish Parikh,et al.  Rewriting null e-commerce queries to recommend products , 2012, WWW.

[11]  Hamid Nazerzadeh,et al.  Maximizing Stochastic Monotone Submodular Functions , 2009, Manag. Sci..

[12]  Su Yan,et al.  Beyond Keywords and Relevance: A Personalized Ad Retrieval Framework in E-Commerce Sponsored Search , 2017, WWW.

[13]  Ravi Kumar,et al.  Optimizing query rewrites for keyword-based advertising , 2008, EC '08.

[14]  Andreas Krause,et al.  Near-Optimally Teaching the Crowd to Classify , 2014, ICML.

[15]  Daniel Lehmann,et al.  Combinatorial auctions with decreasing marginal utilities , 2001, EC '01.

[16]  Andreas Krause,et al.  Submodularity on Hypergraphs: From Sets to Sequences , 2018, AISTATS.

[17]  Aranyak Mehta,et al.  Online budgeted matching in random input models with applications to Adwords , 2008, SODA '08.

[18]  Maria Polukarov,et al.  Auction mechanisms for demand-side intermediaries in online advertising exchanges , 2014, AAMAS.

[19]  Uriel Feige On Maximizing Welfare When Utility Functions Are Subadditive , 2009, SIAM J. Comput..

[20]  Daniel Lehmann,et al.  Combinatorial auctions with decreasing marginal utilities , 2001, EC '01.

[21]  Vahab Mirrokni,et al.  Maximizing Non-Monotone Submodular Functions , 2007, FOCS 2007.

[22]  Edwin K. P. Chong,et al.  Submodularity and optimality of fusion rules in balanced binary relay trees , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[23]  Hui Lin,et al.  A Class of Submodular Functions for Document Summarization , 2011, ACL.

[24]  Aranyak Mehta,et al.  Online Matching and Ad Allocation , 2013, Found. Trends Theor. Comput. Sci..

[25]  Tim Roughgarden,et al.  Algorithmic Game Theory , 2007 .

[26]  Morteza Zadimoghaddam,et al.  Online Stochastic Matching with Unequal Probabilities , 2014, SODA.

[27]  Amin Karbasi,et al.  Greed Is Good: Near-Optimal Submodular Maximization via Greedy Optimization , 2017, COLT.

[28]  Eric Balkanski,et al.  Approximation Guarantees for Adaptive Sampling , 2018, ICML.

[29]  Maxim Sviridenko,et al.  Submodular Stochastic Probing on Matroids , 2013, Math. Oper. Res..

[30]  V. Mirrokni,et al.  Tight approximation algorithms for maximum general assignment problems , 2006, SODA 2006.

[31]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[32]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[33]  Yishay Mansour,et al.  Auctions with Budget Constraints , 2004, SWAT.

[34]  Elchanan Mossel,et al.  Submodularity of Influence in Social Networks: From Local to Global , 2010, SIAM J. Comput..

[35]  Xuan Wang,et al.  Online Resource Allocation with Limited Flexibility , 2018, Manag. Sci..

[36]  Shahar Dobzinski,et al.  An improved approximation algorithm for combinatorial auctions with submodular bidders , 2006, SODA '06.

[37]  Andreas Krause,et al.  Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization , 2010, J. Artif. Intell. Res..

[38]  Andreas S. Schulz,et al.  Revisiting the Greedy Approach to Submodular Set Function Maximization , 2007 .

[39]  Ozan Candogan,et al.  Optimal Contracts for Intermediaries in Online Advertising , 2016, Oper. Res..

[40]  Wei Vivian Zhang,et al.  Comparing Click Logs and Editorial Labels for Training Query Rewriting , 2007 .

[41]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[42]  Aranyak Mehta,et al.  AdWords and generalized on-line matching , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[43]  Xuan Wang,et al.  Online Resource Allocation with Limited Flexibility , 2020, Manag. Sci..

[44]  Aranyak Mehta,et al.  Inapproximability Results for Combinatorial Auctions with Submodular Utility Functions , 2005, Algorithmica.

[45]  Manik Varma,et al.  Multi-label learning with millions of labels: recommending advertiser bid phrases for web pages , 2013, WWW.

[46]  Andreas Krause,et al.  Selecting Sequences of Items via Submodular Maximization , 2017, AAAI.

[47]  U. Feige,et al.  Maximizing Non-monotone Submodular Functions , 2011 .