Structural bias in aggregated species‐level variables driven by repeated species co‐occurrences: a pervasive problem in community and assemblage data

Species attributes are often used to explain diversity patterns across assemblages/communities. However, repeated species co‐occurrences can generate spatial pattern and strong statistical relationships between aggregated attributes and richness in the absence of biological information. Our aim is to increase awareness of this problem.

[1]  C. ter Braak,et al.  Linking trait variation to the environment: critical issues with community‐weighted mean correlation resolved by the fourth‐corner approach , 2017 .

[2]  S. B. Hedges,et al.  Time best explains global variation in species richness of amphibians, birds and mammals , 2016 .

[3]  C. Bellard,et al.  virtualspecies, an R package to generate virtual species distributions , 2016 .

[4]  D. Currie,et al.  Can the richness–climate relationship be explained by systematic variations in how individual species’ ranges relate to climate? , 2016 .

[5]  R. Villar,et al.  Disentangling the relative importance of species occurrence, abundance and intraspecific variability in community assembly: a trait‐based approach at the whole‐plant level in Mediterranean forests , 2016 .

[6]  P. Reich,et al.  Climate determines vascular traits in the ecologically diverse genus Eucalyptus. , 2016, Ecology letters.

[7]  N. Swenson,et al.  Constancy in Functional Space across a Species Richness Anomaly , 2016, The American Naturalist.

[8]  Helene H. Wagner,et al.  A conceptual framework for the spatial analysis of functional trait diversity , 2016 .

[9]  J. Belant,et al.  Spatial patterns of species richness and functional diversity in Costa Rican terrestrial mammals: implications for conservation , 2016 .

[10]  J. D. Whyatt,et al.  How well is current plant trait composition predicted by modern and historical forest spatial configuration , 2016 .

[11]  J. Terborgh,et al.  Phylogenetic diversity of Amazonian tree communities , 2015 .

[12]  R. Stevens,et al.  Dimensionality of community structure: phylogenetic, morphological and functional perspectives along biodiversity and environmental gradients , 2015 .

[13]  E. Douzery,et al.  Projected impacts of climate warming on the functional and phylogenetic components of coastal Mediterranean fish biodiversity , 2015 .

[14]  Nathan J B Kraft,et al.  Shifts in trait means and variances in North American tree assemblages: species richness patterns are loosely related to the functional space , 2015 .

[15]  W. Jetz,et al.  Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients. , 2015, Ecology letters.

[16]  Peer Bork,et al.  Determinants of community structure in the global plankton interactome , 2015, Science.

[17]  G. Joseph,et al.  On Bird Functional Diversity: Species Richness and Functional Differentiation Show Contrasting Responses to Rainfall and Vegetation Structure in an Arid Landscape , 2015, Ecosystems.

[18]  Shai Meiri,et al.  Mean body sizes of amphibian species are poorly predicted by climate , 2015, Journal of Biogeography.

[19]  Nathan J B Kraft,et al.  Linking environmental filtering and disequilibrium to biogeography with a community climate framework. , 2015, Ecology.

[20]  C. Webb,et al.  Scaling from Traits to Ecosystems: Developing a General Trait Driver Theory via Integrating Trait-Based and Metabolic Scaling Theories , 2015, 1502.06629.

[21]  B. A. Hawkins,et al.  Functional determinants of forest recruitment over broad scales , 2015 .

[22]  Ren-qing Wang,et al.  Which components of plant diversity are most correlated with ecosystem properties? A case study in a restored wetland in northern China , 2015 .

[23]  Sandra Díaz,et al.  Does functional trait diversity predict above‐ground biomass and productivity of tropical forests? Testing three alternative hypotheses , 2015 .

[24]  Marie-Josée Fortin,et al.  Spatial Analysis by Mark R. T. Dale , 2014 .

[25]  Species richness and trait composition of butterfly assemblages change along an altitudinal gradient , 2014, Oecologia.

[26]  B. A. Hawkins,et al.  Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests , 2013, Journal of biogeography.

[27]  P. Vittoz,et al.  Predicting current and future spatial community patterns of plant functional traits , 2013 .

[28]  Stuart J. Kininmonth,et al.  Integrating abundance and functional traits reveals new global hotspots of fish diversity , 2013, Nature.

[29]  S. Dray,et al.  A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients , 2013 .

[30]  W. Jetz,et al.  The global diversity of birds in space and time , 2012, Nature.

[31]  Stéphane Dray,et al.  Assessing the effects of spatial contingency and environmental filtering on metacommunity phylogenetics , 2012 .

[32]  Nathan J B Kraft,et al.  The biogeography and filtering of woody plant functional diversity in North and South America , 2012 .

[33]  A. P. Schaffers,et al.  Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses , 2012 .

[34]  Carsten F. Dormann,et al.  Less than eight (and a half) misconceptions of spatial analysis , 2012 .

[35]  Bradford A. Hawkins,et al.  Eight (and a half) deadly sins of spatial analysis , 2012 .

[36]  M. Lechowicz,et al.  Geographical and ecological patterns of range size in North American trees , 2011 .

[37]  P. Vesk,et al.  What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change , 2010 .

[38]  D. Lambert,et al.  Geographically weighted regression bandwidth selection and spatial autocorrelation: an empirical example using Chinese agriculture data , 2010 .

[39]  J. Diniz‐Filho,et al.  Cross-species and assemblage-based approaches to Bergmann's rule and the biogeography of body size in Plethodon salamanders of eastern North America , 2010 .

[40]  Colin M Beale,et al.  Regression analysis of spatial data. , 2010, Ecology letters.

[41]  B. Shipley From Plant Traits to Vegetation Structure: Chance and Selection in the Assembly of Ecological Communities , 2009 .

[42]  Richard Field,et al.  Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression , 2009 .

[43]  Zhe Jiang,et al.  Spatial Statistics , 2013 .

[44]  Richard Field,et al.  Spatial species‐richness gradients across scales: a meta‐analysis , 2009 .

[45]  H. Balslev,et al.  High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness , 2008 .

[46]  T. Davies,et al.  Global variation in diversification rates of flowering plants: energy vs. climate change. , 2007, Ecology letters.

[47]  Carsten F. Dormann,et al.  Introducing the bipartite Package: Analysing Ecological Networks , 2008 .

[48]  R. G. Davies,et al.  Methods to account for spatial autocorrelation in the analysis of species distributional data : a review , 2007 .

[49]  José Alexandre Felizola Diniz-Filho,et al.  Seeing the forest for the trees: partitioning ecological and phylogenetic components of Bergmann's rule in European Carnivora , 2007 .

[50]  Brian J Enquist,et al.  Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. , 2007, American journal of botany.

[51]  T. Bailey Spatial Analysis: A Guide for Ecologists , 2006 .

[52]  J. Diniz‐Filho,et al.  Beyond Rapoport's rule: evaluating range size patterns of New World birds in a two‐dimensional framework , 2006 .

[53]  B. A. Hawkins,et al.  Post‐Eocene climate change, niche conservatism, and the latitudinal diversity gradient of New World birds , 2006 .

[54]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[55]  K. Bollen,et al.  Interpreting the Results from Multiple Regression and Structural Equation Models , 2005 .

[56]  R. G. Davies,et al.  Global hotspots of species richness are not congruent with endemism or threat , 2005, Nature.

[57]  J. Diniz‐Filho,et al.  Water links the historical and contemporary components of the Australian bird diversity gradient , 2005 .

[58]  Brian D. Ripley,et al.  Spatial Statistics: Ripley/Spatial Statistics , 2005 .

[59]  Bradford A. Hawkins,et al.  Bergmann's rule and the mammal fauna of northern North America , 2004 .

[60]  L. Stone,et al.  The checkerboard score and species distributions , 1990, Oecologia.

[61]  Robert Haining,et al.  Spatial data analysis , 2003 .

[62]  J. Diniz‐Filho,et al.  Spatial autocorrelation and red herrings in geographical ecology , 2003 .

[63]  Campbell O. Webb,et al.  Phylogenies and Community Ecology , 2002 .

[64]  N. Gotelli Null model analysis of species co-occurrence patterns , 2000 .

[65]  Jack J. Lennon,et al.  Red-shifts and red herrings in geographical ecology , 2000 .

[66]  J. Kerr,et al.  The relative importance of evolutionary and environmental controls on broad-scale patterns of species richness in North America , 1999 .

[67]  P. Legendre Spatial Autocorrelation: Trouble or New Paradigm? , 1993 .

[68]  G. C. Stevens The Latitudinal Gradient in Geographical Range: How so Many Species Coexist in the Tropics , 1989, The American Naturalist.

[69]  R. E. Cook,et al.  Variation in Species Density of North American Birds , 1969 .

[70]  E. Pianka On Lizard Species Diversity: North American Flatland Deserts , 1967 .