Numerical Integration with Exact Real Arithmetic

We show that the classical techniques in numerical integration (namely the Darboux sums method, the compound trapezoidal and Simpson's rules and the Gauss-Legendre formulae) can be implemented in an exact real arithmetic framework in which the numerical value of an integral of an elementary function is obtained up to any desired accuracy without any round-off errors. Any exact framework which provides a library of algorithms for computing elementary functions with an arbitrary accuracy is suitable for such an implementation; we have used an exact real arithmetic framework based on linear fractional transformations and have thereby implemented these numerical integration techniques. We also show that Euler's and Runge-Kutta methods for solving the initial value problem of an ordinary differential equation can be implemented using an exact framework which will guarantee the convergence of the approximation to the actual solution of the differential equation as the step size in the partition of the interval in question tends to zero.

[1]  Martín Hötzel Escardó,et al.  PCF Extended with Real Numbers , 1996, Theor. Comput. Sci..

[2]  L. Collatz The numerical treatment of differential equations , 1961 .

[3]  Shoichiro Nakamura Applied numerical methods with software , 1991 .

[4]  Reinhold Heckmann How Many Argument Digits are Needed to Produce n Result Digits? , 1999, Electron. Notes Theor. Comput. Sci..

[5]  Peter Kornerup,et al.  MSB-First Digit Serial Arithmetic , 1996 .

[6]  S. Koref-Santibáñez,et al.  Insect Aging. Strategies and Mechanisms. Ed. K.-G. COLLATZ and R. S. SOHAL. SPRINGER Verlag, Berlin-Heidelberg-New York-Tokyo. 1986. 240 S. 79 Abb. , 1987 .

[7]  Christoph W. Ueberhuber,et al.  Numerical Integration on Advanced Computer Systems , 1994, Lecture Notes in Computer Science.

[8]  Abbas Edalat,et al.  Integration in Real PCF , 2000, Inf. Comput..

[9]  Abbas Edalat,et al.  A new representation for exact real numbers , 1997, MFPS.

[10]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[11]  Abbas Edalat,et al.  Domains for Computation in Mathematics, Physics and Exact Real Arithmetic , 1997, Bulletin of Symbolic Logic.

[12]  Robert Cartwright,et al.  Exact real arithmetic formulating real numbers as functions , 1990 .

[13]  H. Engels,et al.  Numerical Quadrature and Cubature , 1980 .

[14]  Hans-Juergen Boehm,et al.  Exact real arithmetic: a case study in higher order programming , 1986, LFP '86.

[15]  A. Stroud,et al.  Approximate Calculation of Integrals , 1962 .

[16]  Abbas Edalat,et al.  Real PCF extended with integration , 1996, LICS 1996.

[17]  Jean Vuillemin Exact Real Computer Arithmetic with Continued Fractions , 1990, IEEE Trans. Computers.

[18]  Arieh Iserles,et al.  A First Course in the Numerical Analysis of Differential Equations: The diffusion equation , 2008 .

[19]  Alex K. Simpson,et al.  Lazy Functional Algorithms for Exact Real Functionals , 1998, MFCS.