Artificial intelligence and pattern recognition techniques in microscope image processing and analysis

Publisher Summary This chapter discusses the role played by tools originating from the field of artificial intelligence (AI). The aim of AI is to stimulate the developments of computer algorithms able to perform the same tasks that are carried out by human intelligence. Some fields of application of AI are automatic problem solving methods for knowledge representation and knowledge engineering, machine vision and pattern recognition, artificial learning, automatic programming, the theory of games, and so forth. Although methods based on the signal theory and the set theory remain the most frequently used methods for the processing of microscope images, methods originating from the framework of AI and pattern recognition seem to produce a growing interest. Among these methods, some of those related to automatic classification and to dimensionality reduction are already being used extensively. The chapter evaluates whether or not tools originating from pattern recognition and AI have diffused within the community of microscopists. It discusses methods available for image processing and analysis in the framework of pattern recognition and AI.

[1]  D. Van Dyck,et al.  Composition determination from HREM images of substitutional alloys , 1990 .

[2]  J Frank,et al.  Three-dimensional structure of 50 S Escherichia coli ribosomal subunits depleted of proteins L7/L12. , 1988, Journal of molecular biology.

[3]  Philip K. Hopke,et al.  An adaptive resonance theory based artificial neural network (ART-2a) for rapid identification of airborne particle shapes from their scanning electron microscopy images , 1994 .

[4]  Gerald Kothleitner,et al.  Quantitative chemical phase imaging by means of energy filtering transmission electron microscopy , 1997 .

[5]  M. Roubens Pattern classification problems and fuzzy sets , 1978 .

[6]  Salvatore Lanzavecchia,et al.  Pattern reconstruction in ultrastructural morphology , 1992 .

[7]  Juan Julián Merelo Guervós,et al.  Application of the Fuzzy Kohonen Clustering Network to Biological Macromolecules Images Classification , 1999, IWANN.

[8]  Jack-Gérard Postaire,et al.  A relaxation scheme for improving a convexity based clustering method , 1994, Pattern Recognit. Lett..

[9]  Noël Bonnet,et al.  Extension of the scatterplot approach to multiple images , 1995 .

[10]  J. Lepault,et al.  Structure of purple membrane from halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 Å resolution , 1986 .

[11]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  José María Carazo,et al.  On a new computationally fast image invariant based on bispectral projections , 1996, Pattern Recognit. Lett..

[13]  Peter Schwander,et al.  Real-space analysis of lattice images and its link to conventional theory , 1997 .

[14]  Yu Xie,et al.  Demography: Past, Present, and Future , 2000 .

[15]  Richard J. Prokop,et al.  A survey of moment-based techniques for unoccluded object representation and recognition , 1992, CVGIP Graph. Model. Image Process..

[16]  C. A. Glasbey,et al.  Multimodal microscopy by digital image processing , 1996 .

[17]  D L Farkas,et al.  Multimode light microscopy and the dynamics of molecules, cells, and tissues. , 1993, Annual review of physiology.

[18]  J Frank,et al.  Methods for studying the dynamic behavior of biological macromolecules. , 1982, Ultramicroscopy.

[19]  U Dahmen,et al.  A pattern recognition technique for the analysis of grain boundary structure by HREM. , 1996, Ultramicroscopy.

[20]  A W Smeulders,et al.  Texture analysis of cervical cell nuclei by segmentation of chromatin patterns. , 1979, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[21]  W. O. Saxton Quantitative comparison of images and transforms , 1998 .

[22]  J M Carazo,et al.  Pattern recognition and classification of images of biological macromolecules using artificial neural networks. , 1994, Biophysical journal.

[23]  C Mory,et al.  EELS elemental mapping with unconventional methods. II. Applications to biological specimens. , 1990, Ultramicroscopy.

[24]  Robert P. W. Duin,et al.  Investigating redundancy in feed-forward neural classifiers , 1997, Pattern Recognit. Lett..

[25]  Marin van Heel,et al.  Correlation functions revisited , 1992 .

[26]  S D Davilla,et al.  Real‐time quantitative elemental analysis and mapping: microchemical imaging in cell physiology , 1992, Journal of microscopy.

[27]  Isabelle Bloch Information combination operators for data fusion: a comparative review with classification , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[28]  J. Ohser,et al.  Determination of microstructural parameters of random spatial surface fractals by measuring chord length distributions , 1993 .

[29]  M van Heel,et al.  Multivariate analysis of single unit cells in electron crystallography. , 1998, Ultramicroscopy.

[30]  J P Rigaut,et al.  Application of confocal scanning laser microscopy for an automated nuclear grading of prostate lesions in three dimensions , 1996, Journal of microscopy.

[31]  Thomas Villmann,et al.  Growing a hypercubical output space in a self-organizing feature map , 1997, IEEE Trans. Neural Networks.

[32]  Koen Janssens,et al.  Automated segmentation of μ‐XRF image sets , 1997 .

[33]  Alberto Diaspro,et al.  Use of stereo vision and 24-bit false-color imagery to enhance visualization of multimodal confocal images , 1995, Electronic Imaging.

[34]  J Frank,et al.  The characterization of structural variations within a crystal field. , 1988, Ultramicroscopy.

[35]  N Bonnet,et al.  Image registration in electron microscopy: application of a robust method. , 1988, Journal of electron microscopy technique.

[36]  Joaquín Fernández-Valdivia,et al.  A dynamic approach for clustering data , 1995, Signal Process..

[37]  Noël Bonnet,et al.  Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis , 1999 .

[38]  Reinhard Kohlus,et al.  Particle Shape Analysis as an example of knowledge extraction by neural nets , 1993 .

[39]  Gian Luca Foresti,et al.  A distributed probabilistic system for adaptive regulation of image processing parameters , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[40]  Vladimir P. Oleshko,et al.  Characterization of double structure tabular microcrystals of silver halide emulsions by means of electron energy-loss spectroscopy, zero-loss electron spectroscopic imaging and energy dispersive X-ray microanalysis , 1995 .

[41]  Abbas Ourmazd,et al.  Quantitative chemical lattice imaging: theory and practice , 1990 .

[42]  Stephen Grossberg,et al.  Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps , 1992, IEEE Trans. Neural Networks.

[43]  Bernadette Bouchon-Meunier,et al.  Towards general measures of comparison of objects , 1996, Fuzzy Sets Syst..

[44]  Marc M. Van Hulle Topographic map formation by maximizing unconditional entropy: a plausible strategy for "online" unsupervised competitive learning and nonparametric density estimation , 1996, IEEE Trans. Neural Networks.

[45]  C Jeanguillaume,et al.  Unconventional modes for STEM imaging of biological structures. , 1984, Journal of ultrastructure research.

[46]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[47]  Ronald R. Yager,et al.  Implementing fuzzy logic controllers using a neural network framework , 1992 .

[48]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[49]  Noël Bonnet,et al.  Preliminary investigation of two methods for the automatic handling of multivariate maps in microanalysis , 1995 .

[50]  S S Cross,et al.  The application of fractal geometric analysis to microscopic images. , 1994, Micron.

[51]  Dinggang Shen,et al.  Discriminative wavelet shape descriptors for recognition of 2-D patterns , 1999, Pattern Recognit..

[52]  Noël Bonnet,et al.  New applications of multivariate statistical analysis in spectroscopy and microscopy , 1992 .

[53]  J. P. Bazin,et al.  Handling of Dynamic Sequences in Nuclear Medicine , 1982, IEEE Transactions on Nuclear Science.

[54]  R. Leapman,et al.  Measurement of low calcium concentrations in cryosectioned cells by parallel-EELS mapping. , 1993, Ultramicroscopy.

[55]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[56]  L. Sander Fractal growth processes , 1986, Nature.

[57]  J M Carazo,et al.  Polymorphic quaternary organization of the Bacillus subtilis bacteriophage SPP1 replicative helicase (G40 P). , 1998, Journal of molecular biology.

[58]  Mayer,et al.  Using the Hough transform for HOLZ line identification in convergent beam electron diffraction , 1999, Journal of microscopy.

[59]  Peter T. Kim,et al.  Coordinate-free self-organising feature maps , 1997 .

[60]  J Frank,et al.  Computer averaging of electron micrographs of 40S ribosomal subunits. , 1981, Science.

[61]  M. Heel,et al.  Classification of very large electron microscopical image data sets , 1989 .

[62]  James C. Bezdek,et al.  Some new indexes of cluster validity , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[63]  R. Shepard Metric structures in ordinal data , 1966 .

[64]  F Frouin,et al.  Confocal fluorescence analysis of the depth and focus of cytogenetic preparations. , 1997, Analytical and quantitative cytology and histology.

[65]  A. Casini,et al.  Multispectral Imaging System for the Mapping of Pigments in Works of Art by use of Principal-Component Analysis. , 1998, Applied optics.

[66]  Timothy Poston,et al.  Fuzzy Hough transform , 1994, Pattern Recognit. Lett..

[67]  J Frank,et al.  Classification of macromolecular assemblies studied as ‘single particles’ , 1990, Quarterly Reviews of Biophysics.

[68]  J P Bretaudiere,et al.  Structure of native alpha 2-macroglobulin and its transformation to the protease bound form. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[70]  Jack Perkins,et al.  Pattern recognition in practice , 1980 .

[71]  Michel Herbin,et al.  A clustering method based on the estimation of the probability density function and on the skeleton by influence zones. Application to image processing , 1996, Pattern Recognit. Lett..

[72]  M Unser,et al.  Normalization procedures and factorial representations for classification of correlation-aligned images: a comparative study. , 1989, Ultramicroscopy.

[73]  K Yogesan,et al.  Entropy-based texture analysis of chromatin structure in advanced prostate cancer. , 1996, Cytometry.

[74]  C Jeanguillaume,et al.  About the use of electron energy-loss spectroscopy for chemical mapping of thin foils with high spatial resolution. , 1978, Ultramicroscopy.

[75]  N. Bonnet,et al.  Multivariate statistical methods for the analysis of microscope image series: applications in materials science , 1998 .

[76]  K.L. Chan,et al.  Quantitative characterization of electron micrograph image using fractal feature , 1995, IEEE Transactions on Biomedical Engineering.

[77]  Hannes Lichte,et al.  The phase-shift method in electron-off-axis holography: using neural network techniques , 1996 .

[78]  Hujun Yin,et al.  On the Distribution and Convergence of Feature Space in Self-Organizing Maps , 1995, Neural Computation.

[79]  Erkki Oja,et al.  Randomized hough transform (rht) : Basic mech-anisms, algorithms, and computational complexities , 1993 .

[80]  C Jeanguillaume,et al.  Electron energy loss spectrometry mapping , 1994 .

[81]  R Reichelt,et al.  Imaging of biological structures with the scanning transmission electron microscope. , 1984, Journal of ultrastructure research.

[82]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[83]  M Schatz,et al.  Invariant classification of molecular views in electron micrographs. , 1990, Ultramicroscopy.

[84]  Kurt Hornik,et al.  Neural networks and principal component analysis: Learning from examples without local minima , 1989, Neural Networks.

[85]  Johann Gasteiger,et al.  Neural Networks for Chemists: An Introduction , 1993 .

[86]  Nathan S. Jacobson,et al.  Multielement mapping of alpha-SiC by scanning Auger microscopy , 1987 .

[87]  Nigel Pitts Imaging techniques in dentistry: Automatic detection and quantitation of dental caries. In: Wamsteker K et al (eds).: Imaging and visual documentation in medicine. , 1987 .

[88]  J. Frank,et al.  Correspondence analysis of aligned images of biological particles. , 1982, Journal of molecular biology.

[89]  F Frouin,et al.  Four‐dimensional factor analysis of confocal image sequences (4D‐FAMIS) to detect and characterize low copy numbers of human papillomavirus DNA by FISH in HeLa and SiHa cells , 1999, Journal of microscopy.

[90]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[91]  E. S. Gelsema,et al.  Optimal conditions for the use of correspondence analysis for element determination in EELS images , 1994 .

[92]  P. P. Wang,et al.  A Fuzzy Logic Approach to Edge Detection in HREM Images of III-V Crystals , 1996, Inf. Sci..

[93]  F Frouin,et al.  Characterization of cosmids and telomeres in cytogenetic preparations by 3D confocal fluorescence. , 1998, Analytical and quantitative cytology and histology.

[94]  Albert Katsnelson,et al.  Solid State Physics and Chemistry , 1979 .

[95]  Jennifer L. Davidson Classification of lattice transformations in image processing , 1993 .

[96]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[97]  Christian Colliex,et al.  Spectrum-image: The next step in EELS digital acquisition and processing , 1989 .

[98]  P. G. Kenny,et al.  Automatic and Interactive Correlation Partitioning Compared: Application to TiN/Ti/SiO2 , 1997 .

[99]  R. Jullien,et al.  On the measurement of the fractal dimension of aggregated particles by electron microscopy : experimental method, corrections and comparison with numerical models , 1986 .

[100]  P. G. Kenny,et al.  Multi-imaging and multivariate statistics used for 3D characterization at surfaces , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[101]  Anil K. Jain,et al.  A nonlinear projection method based on Kohonen's topology preserving maps , 1992, IEEE Trans. Neural Networks.

[102]  Vice President,et al.  An Introduction to Expert Systems , 1989 .

[103]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[104]  James C. Bezdek,et al.  Two soft relatives of learning vector quantization , 1995, Neural Networks.

[105]  J M Carazo,et al.  Analysis of structural variability within two-dimensional biological crystals by a combination of patch averaging techniques and self organizing maps. , 1996, Ultramicroscopy.

[106]  R E Burge,et al.  Multiple signals in STEM , 1982, Journal of microscopy.

[107]  Suchendra M. Bhandarkar,et al.  Multiscale image segmentation using a hierarchical self-organizing map , 1997, Neurocomputing.

[108]  G. Janssens,et al.  Imaging and image processing in analytical chemistry , 1992 .

[109]  V. Kindratenko,et al.  Fractal dimensional classification of aerosol particles by computer-controlled scanning electron microscopy. , 1994, Environmental science & technology.

[110]  Mica R. Endsley,et al.  Providing understanding of the behavior of feedforward neural networks , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[111]  N Bonnet,et al.  EELS elemental mapping with unconventional methods. I. Theoretical basis: image analysis with multivariate statistics and entropy concepts. , 1990, Ultramicroscopy.

[112]  A. Morineau,et al.  Multivariate descriptive statistical analysis , 1984 .

[113]  J. Frank,et al.  Use of multivariate statistics in analysing the images of biological macromolecules. , 1981, Ultramicroscopy.

[114]  B. Quinn,et al.  Cell surfaces and fractal dimensions , 1991, Journal of microscopy.

[115]  Ashok Samal,et al.  Generalized Hough transform for natural shapes , 1997, Pattern Recognit. Lett..

[116]  Rose,et al.  Statistical mechanics and phase transitions in clustering. , 1990, Physical review letters.

[117]  Richard D. Leapman,et al.  Combined elemental and stem imaging under computer control , 1983 .

[118]  Severin Amelinckx,et al.  Handbook of microscopy : applications in materials science, solid-state physics and chemistry , 1997 .

[119]  J. N. Wilson,et al.  Image Algebra: An Overview , 1990, Comput. Vis. Graph. Image Process..

[120]  Mauro Barni,et al.  Comments on "A possibilistic approach to clustering" , 1996, IEEE Trans. Fuzzy Syst..

[121]  James C. Bezdek,et al.  Repairs to GLVQ: a new family of competitive learning schemes , 1996, IEEE Trans. Neural Networks.

[122]  G. H. Landeweerd,et al.  The use of nuclear texture parameters in the automatic analysis of leukocytes , 1978, Pattern Recognit..

[123]  Marin van Heel,et al.  Classification of image data in conjugate representation spaces , 1990 .

[124]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[125]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[126]  Josef Kittler,et al.  A survey of the hough transform , 1988, Comput. Vis. Graph. Image Process..

[127]  Ralph Roskies,et al.  Fourier Descriptors for Plane Closed Curves , 1972, IEEE Transactions on Computers.

[128]  J Frank,et al.  Classification of images of biomolecular assemblies: a study of ribosomes and ribosomal subunits of Escherichia coli , 1988, Journal of microscopy.

[129]  T F Nonnenmacher,et al.  Digital image analysis of self-similar cell profiles. , 1994, International journal of bio-medical computing.

[130]  J Frank,et al.  Reconstitution of molecule images analysed by correspondence analysis: A tool for structural interpretation , 1986, Journal of Microscopy.

[131]  T M Jovin,et al.  Multivariate chromosome analysis and complete karyotyping using dual labeling and fluorescence digital imaging microscopy. , 1990, Cytometry.

[132]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[133]  Joachim Diederich,et al.  The truth will come to light: directions and challenges in extracting the knowledge embedded within trained artificial neural networks , 1998, IEEE Trans. Neural Networks.

[134]  Gilbert Saporta,et al.  L'analyse des données , 1981 .

[135]  J Frank,et al.  Use of nonlinear mapping in multivariate image analysis of molecule projections. , 1985, Ultramicroscopy.

[136]  E. Anguiano,et al.  Study of the fractal character of surfaces by scanning tunnelling microscopy: Errors and limitations , 1992 .

[137]  Paul Scheunders,et al.  Non-linear dimensionality reduction techniques for unsupervised feature extraction , 1998, Pattern Recognit. Lett..

[138]  N Bonnet,et al.  Optimization of phosphorus localization by EFTEM of nucleic acid containing structures , 1998, Micron.

[139]  R A Crowther,et al.  Harmonic analysis of electron microscope images with rotational symmetry. , 1971, Journal of molecular biology.

[140]  P. W. Hawkes Reflections on the algebraic manipulation of sets of electron images or spectra , 1993 .

[141]  P. G. Kenny,et al.  Topographical contrast using scatter diagrams and correlated images form four backscattered electron detectors , 1991 .

[142]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[143]  James C. Bezdek,et al.  Generalized clustering networks and Kohonen's self-organizing scheme , 1993, IEEE Trans. Neural Networks.

[144]  Ken Xu,et al.  Integration of neural networks and expert systems for microscopic wear particle analysis , 1998, Knowl. Based Syst..

[145]  J. F. Aebersold,et al.  Quantitative interpretation of HRTEM images using multivariate statistics: the case of the (γ, γ′)-interface in a Ni base superalloy , 1996 .

[146]  M. Heel,et al.  Characteristic views of E. coli and B. stearothermophilus 30S ribosomal subunits in the electron microscope. , 1985, The EMBO journal.

[147]  Marin van Heel,et al.  Multivariate statistical classification of noisy images (randomly oriented biological macromolecules) , 1984 .

[148]  N. Bonnet,et al.  Application of multivariate statistical analysis to energetic image series , 1988 .

[149]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[150]  D. Demandolx,et al.  Multicolour analysis and local image correlation in confocal microscopy , 1997 .

[151]  Wu Zi-Qin,et al.  Fractal patterns in the annealed sandwich Au/aGe/Au , 1989 .

[152]  原田 秀逸 私の computer 環境 , 1998 .

[153]  James C. Bezdek,et al.  Fuzzy models—What are they, and why? [Editorial] , 1993, IEEE Transactions on Fuzzy Systems.

[154]  N Bonnet,et al.  Analysis of image sequences in fluorescence videomicroscopy of stationary objects. , 1998, Cytometry.

[155]  H. Kolb,et al.  Complexity and scaling properties of amacrine, ganglion, horizontal, and bipolar cells in the turtle retina , 1994, The Journal of comparative neurology.

[156]  Jos B. T. M. Roerdink,et al.  Mathematical Morphology in Image Processing , 1993 .

[157]  P. G. Kenny,et al.  Three-dimensional scatter diagrams : application to surface analytical microscopy , 1994 .

[158]  Oscar Nestares,et al.  Automatic computation of the area irradiated by ultrashort laser pulses in Sb materials through texture segmentation of TEM images , 1996 .

[159]  Hai-Shan Wu,et al.  A focusing algorithm for high magnification cell imaging , 1996 .

[160]  M. Hulle Kernel-Based Equiprobabilistic Topographic Map Formation , 1998, Neural Computation.

[161]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[162]  Noël Bonnet,et al.  Image Analysis: Is the Fourier Transform Becoming Obsolete? , 1997 .

[163]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[164]  George Harauz,et al.  Self-organisation of cryoelectron micrographs of the phosphoenolpyruvate synthase from Staphylothermus marinus , 1998 .

[165]  J Frank,et al.  Fuzzy sets‐based classification of electron microscopy images of biological macromolecules with an application to ribosomal particles , 1990, Journal of microscopy.

[166]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[167]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[168]  Peter Hawkes,et al.  Review paper Image Algebra for Electron Images , 1995 .

[169]  M. Hytch,et al.  Quantitative criteria for the matching of simulations with experimental HREM images , 1994 .

[170]  P. G. Kenny,et al.  Image correlation : application to correction of beam current fluctuations in quantitative surface microscopy , 1991 .

[171]  Marin van Heel,et al.  Similarity measures between images , 1987 .

[172]  Peter Schwander,et al.  An approach to quantitative high-resolution transmission electron microscopy of crystalline materials , 1995 .

[173]  Jean Paul Rigaut,et al.  Automated image segmentation by mathematical morphology and fractal geometry , 1988 .

[174]  Pierre Demartines Analyse de donnees par reseaux de neurones auto-organises , 1994 .

[175]  James C. Bezdek,et al.  A Review of Probabilistic, Fuzzy, and Neural Models for Pattern Recognition , 1996, J. Intell. Fuzzy Syst..

[176]  W. O. Saxton,et al.  The correlation averaging of a regularly arranged bacterial cell envelope protein , 1982, Journal of microscopy.

[177]  D. Van Dyck,et al.  Handbook of Microscopy , 1996 .

[178]  N Boisset,et al.  Image processing of proteinase- and methylamine-transformed human alpha 2-macroglobulin. Localization of the proteinases. , 1989, The Journal of biological chemistry.

[179]  Francisco F. Rivera,et al.  Cluster validity based on the hard tendency of the fuzzy classification , 1990, Pattern Recognit. Lett..

[180]  Yi Zheng,et al.  Reduction of breast biopsies with a modified self-organizing map , 1997, IEEE Trans. Neural Networks.

[181]  Paul Scheunders,et al.  A Texture Analysis Approach to Corrosion Image Classification , 1996 .

[182]  B H Mayall,et al.  Characterization of chromatin distribution in cell nuclei. , 1986, Cytometry.

[183]  Stephen Grossberg,et al.  Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system , 1991, Neural Networks.

[184]  Anil K. Jain,et al.  Artificial Neural Networks: A Tutorial , 1996, Computer.

[185]  S. Lowen The Biophysical Journal , 1960, Nature.

[186]  Edmund R. Malinowski,et al.  Factor Analysis in Chemistry , 1980 .

[187]  Edward R. Dougherty,et al.  Mathematical Morphology in Image Processing , 1992 .

[188]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[189]  Patrice Duval,et al.  Observation of Coherent Bremstrahlung by EDX Analysis in a Transmission Electron Microscope. Case of the Martensites of Cu-Al System , 1996 .

[190]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.

[191]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[192]  G. Harauz,et al.  Complementary application of correspondence analysis and event covering of noisy image sequences , 1993 .