Output Sum of Transducers: Limiting Distribution and Periodic Fluctuation

As a generalization of the sum of digits function and other digital sequences, sequences defined as the sum of the output of a transducer are asymptotically analyzed. The input of the transducer is a random integer in $[0, N)$. Analogues in higher dimensions are also considered. Sequences defined by a certain class of recursions can be written in this framework. Depending on properties of the transducer, the main term, the periodic fluctuation and an error term of the expected value and the variance of this sequence are established. The periodic fluctuation of the expected value is H\"older continuous and, in many cases, nowhere differentiable. A general formula for the Fourier coefficients of this periodic function is derived. Furthermore, it turns out that the sequence is asymptotically normally distributed for many transducers. As an example, the abelian complexity function of the paperfolding sequence is analyzed. This sequence has recently been studied by Madill and Rampersad.

[1]  Jörg M. Thuswaldner,et al.  Summatory Functions of Digital Sums Occurring in Cryptography , 1999 .

[2]  Hsien-Kuei Hwang,et al.  On Convergence Rates in the Central Limit Theorems for Combinatorial Structures , 1998, Eur. J. Comb..

[3]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[4]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[5]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[6]  Tosio Kato Perturbation theory for linear operators , 1966 .

[7]  Marcel Paul Schützenberger,et al.  Sur une Variante des Fonctions Sequentielles , 1977, Theor. Comput. Sci..

[8]  Clemens Heuberger,et al.  Minimal weight and colexicographically minimal integer representations , 2007, J. Math. Cryptol..

[9]  Clemens Heuberger,et al.  Automata in SageMath - Combinatorics meet Theoretical Computer Science , 2014, Discret. Math. Theor. Comput. Sci..

[10]  Philippe Dumas,et al.  Asymptotic expansions for linear homogeneous divide-and-conquer recurrences: Algebraic and analytic approaches collated , 2014, Theor. Comput. Sci..

[11]  Peter Kirschenhofer Subblock Occurrences in the q-Ary Representation of n , 1983 .

[12]  J. Nešetřil,et al.  Sur la non-dérivabilité de fonctions périodiques associées à certaines formules sommatoires , 2006 .

[13]  Daniel W. Lozier,et al.  NIST Digital Library of Mathematical Functions , 2003, Annals of Mathematics and Artificial Intelligence.

[14]  Peter J. Grabner,et al.  On The Sum of Digits Function for Number Systems with Negative Bases , 2000 .

[15]  I. Kátai,et al.  Distribution of the values ofq-additive functions on polynomial sequences , 1995 .

[16]  Emmanuel Cateland,et al.  Suites digitales et suites k-régulières , 1992 .

[17]  T. Apostol Modular Functions and Dirichlet Series in Number Theory , 1976 .

[18]  M. Drmota,et al.  Combinatorics, Automata and Number Theory: Analysis of digital functions and applications , 2010 .

[19]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[20]  Helmut Prodinger,et al.  Mellin Transforms and Asymptotics: Digital Sums , 1994, Theor. Comput. Sci..

[21]  Peter J. Grabner,et al.  Distribution of Binomial Coefficients and Digital Functions , 2001 .

[22]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[23]  Narad Rampersad,et al.  The abelian complexity of the paperfolding word , 2012, Discret. Math..

[24]  Hsien-Kuei Hwang,et al.  Digital Sums and Divide-and-Conquer Recurrences: Fourier Expansions and Absolute Convergence , 2005 .

[25]  Helmut Prodinger,et al.  Distribution results for low-weight binary representations for pairs of integers , 2004, Theor. Comput. Sci..

[26]  C. Heuberger,et al.  SUBBLOCK OCCURRENCES IN SIGNED DIGIT REPRESENTATIONS , 2003, Glasgow Mathematical Journal.

[27]  Clemens Heuberger,et al.  Analysis of the Binary Asymmetric Joint Sparse Form , 2014, Comb. Probab. Comput..

[28]  Manfred Peter The asymptotic distribution of elements in automatic sequences , 2003, Theor. Comput. Sci..

[29]  Philippe Dumas Joint spectral radius, dilation equations, and asymptotic behavior of radix-rational sequences , 2013 .

[30]  Clemens Heuberger,et al.  Automata and Transducers in the Computer Algebra System Sage , 2014, ArXiv.

[31]  P. Rowlinson ALGEBRAIC GRAPH THEORY (Graduate Texts in Mathematics 207) By CHRIS GODSIL and GORDON ROYLE: 439 pp., £30.50, ISBN 0-387-95220-9 (Springer, New York, 2001). , 2002 .

[32]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[33]  Helmut Prodinger,et al.  Subblock Occurrences in Positional Number Systems and Gray code Representation , 1984 .