Parkinson’s disease-linked parkin mutation disrupts recycling of synaptic vesicles in human dopaminergic neurons

[1]  G. Oyama,et al.  Genotype-phenotype correlation of Parkinson's disease with PRKN variants , 2022, Neurobiology of Aging.

[2]  D. Surmeier,et al.  Disruption of mitochondrial complex I induces progressive parkinsonism , 2021, Nature.

[3]  N. Brüggemann,et al.  Task matters - challenging the motor system allows distinguishing unaffected Parkin mutation carriers from mutation-free controls. , 2021, Parkinsonism & related disorders.

[4]  H. Walden,et al.  A mechanistic review of Parkin activation. , 2021, Biochimica et biophysica acta. General subjects.

[5]  D. Krainc,et al.  Synaptic, Mitochondrial, and Lysosomal Dysfunction in Parkinson’s Disease , 2019, Trends in Neurosciences.

[6]  G. Lukács,et al.  Publisher Correction: Mechanism of parkin activation by phosphorylation , 2018, Nature Structural & Molecular Biology.

[7]  G. Lukács,et al.  Mechanism of parkin activation by phosphorylation , 2018, Nature Structural & Molecular Biology.

[8]  D. Komander,et al.  Mechanism of parkin activation by PINK1 , 2018, Nature.

[9]  Maximilian Haeussler,et al.  CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens , 2018, Nucleic Acids Res..

[10]  D. Krainc,et al.  LRRK2 phosphorylation of auxilin mediates synaptic defects in dopaminergic neurons from patients with Parkinson’s disease , 2018, Proceedings of the National Academy of Sciences.

[11]  Sohee Jeon,et al.  Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease , 2017, Science.

[12]  M. Nalls,et al.  A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci , 2017, Nature Genetics.

[13]  Seth A. Villarreal,et al.  Measuring Synaptic Vesicle Endocytosis in Cultured Hippocampal Neurons. , 2017, Journal of visualized experiments : JoVE.

[14]  Mark Ellisman,et al.  Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons , 2017, Neuron.

[15]  D. James Surmeier,et al.  Selective neuronal vulnerability in Parkinson disease , 2017, Nature Reviews Neuroscience.

[16]  D. Krainc,et al.  Parkin Modulates Endosomal Organization and Function of the Endo-Lysosomal Pathway , 2016, Journal of Neuroscience.

[17]  D. Krainc,et al.  Detection of Free and Protein-Bound ortho-Quinones by Near-Infrared Fluorescence. , 2016, Analytical chemistry.

[18]  John R Yates,et al.  Extracting Accurate Precursor Information for Tandem Mass Spectra by RawConverter. , 2015, Analytical chemistry.

[19]  Jimin Wang,et al.  A Ubl/ubiquitin switch in the activation of Parkin , 2015, The EMBO journal.

[20]  V. Haucke,et al.  Molecular Mechanisms of Presynaptic Membrane Retrieval and Synaptic Vesicle Reformation , 2015, Neuron.

[21]  P. De Camilli,et al.  Upregulation of Parkin in Endophilin Mutant Mice , 2014, The Journal of Neuroscience.

[22]  J. Segura-Aguilar,et al.  Protective and toxic roles of dopamine in Parkinson's disease , 2014, Journal of neurochemistry.

[23]  S. Pappatà,et al.  PARK20 caused by SYNJ1 homozygous Arg258Gln mutation in a new Italian family , 2014, neurogenetics.

[24]  T. Hirokawa,et al.  Ubiquitin is phosphorylated by PINK1 to activate parkin , 2014, Nature.

[25]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[26]  Vladimir Makarov,et al.  The Sac1 Domain of SYNJ1 Identified Mutated in a Family with Early‐Onset Progressive Parkinsonism with Generalized Seizures , 2013, Human mutation.

[27]  Steven P. Gygi,et al.  Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization , 2013, Nature.

[28]  A. Tolun,et al.  DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. , 2013, Parkinsonism & related disorders.

[29]  P. Verstreken,et al.  LRRK2 Controls an EndoA Phosphorylation Cycle in Synaptic Endocytosis , 2012, Neuron.

[30]  M. Bramerio,et al.  Lewy body pathology and typical Parkinson disease in a patient with a heterozygous (R275W) mutation in the Parkin gene (PARK2) , 2012, Acta Neuropathologica.

[31]  Miratul M. K. Muqit,et al.  PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65 , 2012, Open Biology.

[32]  K. Kaestner,et al.  A Deleterious Mutation in DNAJC6 Encoding the Neuronal-Specific Clathrin-Uncoating Co-Chaperone Auxilin, Is Associated with Juvenile Parkinsonism , 2012, PloS one.

[33]  D. Krainc,et al.  Movement disorders in 2011: Translating new research findings into clinical practice , 2012, Nature Reviews Neurology.

[34]  D. Surmeier,et al.  Floor plate-derived dopamine neurons from hESCs efficiently engraft in animal models of PD , 2016 .

[35]  O. Shupliakov,et al.  An endophilin–dynamin complex promotes budding of clathrin-coated vesicles during synaptic vesicle recycling , 2011, Journal of Cell Science.

[36]  A. Schapira,et al.  Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. , 2010, Human molecular genetics.

[37]  K. Lohmann,et al.  Mutant Parkin Impairs Mitochondrial Function and Morphology in Human Fibroblasts , 2010, PloS one.

[38]  Angela C. Poole,et al.  The Mitochondrial Fusion-Promoting Factor Mitofusin Is a Substrate of the PINK1/Parkin Pathway , 2010, PloS one.

[39]  Fabienne C. Fiesel,et al.  PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 , 2010, Nature Cell Biology.

[40]  P. McPherson,et al.  SH3 domains from a subset of BAR proteins define a Ubl-binding domain and implicate parkin in synaptic ubiquitination. , 2009, Molecular cell.

[41]  J. Dittman,et al.  Molecular circuitry of endocytosis at nerve terminals. , 2009, Annual review of cell and developmental biology.

[42]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[43]  Daniel B. McClatchy,et al.  Comparisons of mass spectrometry compatible surfactants for global analysis of the mammalian brain proteome. , 2008, Analytical chemistry.

[44]  Joseph T. Glessner,et al.  PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. , 2007, Genome research.

[45]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[46]  John R Yates,et al.  Validation of Tandem Mass Spectrometry Database Search Results Using DTASelect , 2006, Current protocols in bioinformatics.

[47]  Leon Lagnado,et al.  Clathrin-Mediated Endocytosis Is the Dominant Mechanism of Vesicle Retrieval at Hippocampal Synapses , 2006, Neuron.

[48]  Steven P Gygi,et al.  A probability-based approach for high-throughput protein phosphorylation analysis and site localization , 2006, Nature Biotechnology.

[49]  T. Gillis,et al.  Influence of heterozygosity for parkin mutation on onset age in familial Parkinson disease: the GenePD study. , 2006, Archives of neurology.

[50]  D. Selkoe,et al.  Dopamine covalently modifies and functionally inactivates parkin , 2005, Nature Medicine.

[51]  P. Bauer,et al.  PINK1, Parkin, and DJ-1 mutations in Italian patients with early-onset parkinsonism , 2005, European Journal of Human Genetics.

[52]  P. Lockhart,et al.  RING finger 1 mutations in Parkin produce altered localization of the protein. , 2003, Human molecular genetics.

[53]  Sunil Q. Mehta,et al.  Synaptojanin Is Recruited by Endophilin to Promote Synaptic Vesicle Uncoating , 2003, Neuron.

[54]  E. Jorgensen,et al.  Endophilin Is Required for Synaptic Vesicle Endocytosis by Localizing Synaptojanin , 2003, Neuron.

[55]  J. Yates,et al.  DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. , 2002, Journal of proteome research.

[56]  W D Heiss,et al.  Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial Parkinsonism associated with mutations in the Parkin gene , 2001, Annals of neurology.

[57]  T. Hastings,et al.  Role of oxidative changes in the degeneration of dopamine terminals after injection of neurotoxic levels of dopamine , 2000, Neuroscience.

[58]  L. Greene,et al.  Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[59]  T. A. Ryan,et al.  Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system , 2000, Nature Cell Biology.

[60]  L. Elferink,et al.  Tyrosine Hydroxylase Is Inactivated by Catechol‐Quinones and Converted to a Redox‐Cycling Quinoprotein , 1999, Journal of neurochemistry.

[61]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[62]  M. Zigmond,et al.  Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[63]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[64]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[65]  T. Reese,et al.  EVIDENCE FOR RECYCLING OF SYNAPTIC VESICLE MEMBRANE DURING TRANSMITTER RELEASE AT THE FROG NEUROMUSCULAR JUNCTION , 1973, The Journal of cell biology.

[66]  C. Guatimosim,et al.  Using the fluorescent styryl dye FM1-43 to visualize synaptic vesicles exocytosis and endocytosis in motor nerve terminals. , 2011, Methods in molecular biology.

[67]  W. Betz,et al.  Imaging synaptic vesicle exocytosis and endocytosis with FM dyes , 2007, Nature Protocols.