Equilibrium selection via replicator dynamics in $$2 \times 2$$2×2 coordination games

This paper studies two equilibrium selection methods based on replicator dynamics. A Nash equilibrium is called centroid dominant if the trajectory of the replicator dynamics starting at the centroid of the strategy simplex converges to it. On the other hand, an equilibrium is called basin dominant if it has the largest basin of attraction. These two concepts are compared with risk dominance in the context of $$2 \times 2$$2×2 bimatrix coordination games. The main results include (a) if a Nash equilibrium is both risk dominant and centroid dominant, it must have the largest basin of attraction, (b) the basin dominant equilibrium must be risk dominant or centroid dominant.

[1]  E. C. Zeeman,et al.  Population dynamics from game theory , 1980 .

[2]  Josef Hofbauer,et al.  Perfect Foresight and Equilibrium Selection in Symmetric Potential Games , 1998 .

[3]  Stephen Morris,et al.  P-dominance and belief potential , 2010 .

[4]  R. Rob,et al.  Learning, Mutation, and Long Run Equilibria in Games , 1993 .

[5]  Christian Hilbe,et al.  Local Replicator Dynamics: A Simple Link Between Deterministic and Stochastic Models of Evolutionary Game Theory , 2011, Bulletin of mathematical biology.

[6]  Josef Hofbauer,et al.  Travelling waves for games in economics and biology , 1997 .

[7]  K. Schlag Why Imitate, and If So, How?, : A Boundedly Rational Approach to Multi-armed Bandits , 1998 .

[8]  William H. Sandholm,et al.  ON THE GLOBAL CONVERGENCE OF STOCHASTIC FICTITIOUS PLAY , 2002 .

[9]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[10]  Scott E. Page,et al.  Basins of attraction and equilibrium selection under different learning rules , 2009 .

[11]  Tilman Börgers,et al.  Learning Through Reinforcement and Replicator Dynamics , 1997 .

[12]  H. Young,et al.  The Evolution of Conventions , 1993 .

[13]  L. Samuelson Evolutionary Games and Equilibrium Selection , 1997 .

[14]  M. Nowak,et al.  Evolutionary Dynamics of Biological Games , 2004, Science.

[15]  Ken Binmore,et al.  Muddling Through: Noisy Equilibrium Selection☆ , 1997 .

[16]  R. McKelvey,et al.  Quantal Response Equilibria for Normal Form Games , 1995 .

[17]  Jörgen W. Weibull,et al.  Evolutionary Game Theory , 1996 .

[18]  O. H. Brownlee,et al.  ACTIVITY ANALYSIS OF PRODUCTION AND ALLOCATION , 1952 .

[19]  Kiminori Matsuyama,et al.  An Approach to Equilibrium Selection , 1995 .

[20]  T. Schelling The Strategy of Conflict , 1963 .

[21]  Josef Hofbauer,et al.  The spatially dominant equilibrium of a game , 1999, Ann. Oper. Res..

[22]  H. Peyton Young,et al.  Stochastic Evolutionary Game Dynamics , 1990 .

[23]  J. Huyck,et al.  Tacit Coordination Games, Strategic Uncertainty, and Coordination Failure , 1990 .

[24]  John C. Harsanyi,et al.  Общая теория выбора равновесия в играх / A General Theory of Equilibrium Selection in Games , 1989 .

[25]  P. Taylor,et al.  Evolutionarily Stable Strategies and Game Dynamics , 1978 .

[26]  Youngse Kim,et al.  Equilibrium Selection inn-Person Coordination Games , 1996 .