Virus-Encoded microRNAs: An Overview and a Look to the Future

MicroRNAs (miRNAs) are small RNAs that play important roles in the regulation of gene expression. First described as posttranscriptional gene regulators in eukaryotic hosts, virus-encoded miRNAs were later uncovered. It is now apparent that diverse virus families, most with DNA genomes, but at least some with RNA genomes, encode miRNAs. While deciphering the functions of viral miRNAs has lagged behind their discovery, recent functional studies are bringing into focus these roles. Some of the best characterized viral miRNA functions include subtle roles in prolonging the longevity of infected cells, evading the immune response, and regulating the switch to lytic infection. Notably, all of these functions are particularly important during persistent infections. Furthermore, an emerging view of viral miRNAs suggests two distinct groups exist. In the first group, viral miRNAs mimic host miRNAs and take advantage of conserved networks of host miRNA target sites. In the larger second group, viral miRNAs do not share common target sites conserved for host miRNAs, and it remains unclear what fraction of these targeted transcripts are beneficial to the virus. Recent insights from multiple virus families have revealed new ways of interacting with the host miRNA machinery including noncanonical miRNA biogenesis and new mechanisms of posttranscriptional cis gene regulation. Exciting challenges await the field, including determining the most relevant miRNA targets and parlaying our current understanding of viral miRNAs into new therapeutic strategies. To accomplish these goals and to better grasp miRNA function, new in vivo models that recapitulate persistent infections associated with viral pathogens are required.

[1]  A. Giraldez,et al.  Ribosome Profiling Shows That miR-430 Reduces Translation Before Causing mRNA Decay in Zebrafish , 2012, Science.

[2]  Grace X. Y. Zheng,et al.  MicroRNAs can generate thresholds in target gene expression , 2011, Nature Genetics.

[3]  Venugopal Nair,et al.  Critical Role of the Virus-Encoded MicroRNA-155 Ortholog in the Induction of Marek's Disease Lymphomas , 2011, PLoS pathogens.

[4]  R. Langlois,et al.  In vivo delivery of cytoplasmic RNA virus-derived miRNAs. , 2012, Molecular therapy : the journal of the American Society of Gene Therapy.

[5]  Rodney P Kincaid,et al.  RNA virus microRNA that mimics a B-cell oncomiR , 2012, Proceedings of the National Academy of Sciences.

[6]  A. van den Berg,et al.  MicroRNAs, macrocontrol: regulation of miRNA processing. , 2010, RNA.

[7]  B. Cullen,et al.  Analysis of Human Alphaherpesvirus MicroRNA Expression in Latently Infected Human Trigeminal Ganglia , 2009, Journal of Virology.

[8]  O. J. Semmes,et al.  BclAF1 restriction factor is neutralized by proteasomal degradation and microRNA repression during human cytomegalovirus infection , 2012, Proceedings of the National Academy of Sciences.

[9]  F. Jiggins,et al.  The evolution of RNAi as a defence against viruses and transposable elements , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[10]  B. Cullen,et al.  The role of RNAi and microRNAs in animal virus replication and antiviral immunity. , 2009, Genes & development.

[11]  She Chen,et al.  Autoantigen La promotes efficient RNAi, antiviral response, and transposon silencing by facilitating multiple-turnover RISC catalysis. , 2011, Molecular cell.

[12]  A. García-Sastre,et al.  Engineered RNA viral synthesis of microRNAs , 2010, Proceedings of the National Academy of Sciences.

[13]  G. Seo,et al.  Merkel cell polyomavirus encodes a microRNA with the ability to autoregulate viral gene expression. , 2009, Virology.

[14]  B. Cullen Five Questions about Viruses and MicroRNAs , 2010, PLoS pathogens.

[15]  P. W. Hsu,et al.  A Non-coding RNA of Insect HzNV-1 Virus Establishes Latent Viral Infection through MicroRNA , 2011, Scientific reports.

[16]  E. Lai,et al.  Vive la différence: biogenesis and evolution of microRNAs in plants and animals , 2011, Genome Biology.

[17]  Evgeny A. Glazov,et al.  Characterization of microRNAs encoded by the bovine herpesvirus 1 genome. , 2010, The Journal of general virology.

[18]  C. S. Sullivan New roles for large and small viral RNAs in evading host defences , 2008, Nature Reviews Genetics.

[19]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[20]  Noam Stern-Ginossar,et al.  Analysis of Human Cytomegalovirus-Encoded MicroRNA Activity during Infection , 2009, Journal of Virology.

[21]  Y. Pekarsky,et al.  Is miR-29 an oncogene or tumor suppressor in CLL? , 2010, Oncotarget.

[22]  Uwe Ohler,et al.  Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. , 2011, Cell host & microbe.

[23]  Adam Grundhoff,et al.  Virus-encoded microRNAs. , 2011, Virology.

[24]  B. O'Hara,et al.  Evolutionarily Conserved Function of a Viral MicroRNA , 2008, Journal of Virology.

[25]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[26]  Bryan R. Cullen,et al.  A viral microRNA functions as an orthologue of cellular miR-155 , 2007, Nature.

[27]  P. Sarnow,et al.  Modulation of Hepatitis C Virus RNA Abundance by a Liver-Specific MicroRNA , 2005, Science.

[28]  J. Mendell,et al.  MicroRNAs in Stress Signaling and Human Disease , 2012, Cell.

[29]  D. Ganem,et al.  Murine Polyomavirus encodes a microRNA that cleaves early RNA transcripts but is not essential for experimental infection. , 2009, Virology.

[30]  K. Jeang RNAi in the regulation of mammalian viral infections , 2012, BMC Biology.

[31]  B. Cullen,et al.  The Members of an Epstein-Barr Virus MicroRNA Cluster Cooperate To Transform B Lymphocytes , 2011, Journal of Virology.

[32]  B. Cullen,et al.  A mammalian herpesvirus uses noncanonical expression and processing mechanisms to generate viral MicroRNAs. , 2010, Molecular cell.

[33]  B. Cullen,et al.  Human Papillomavirus Genotype 31 Does Not Express Detectable MicroRNA Levels during Latent or Productive Virus Replication , 2006, Journal of Virology.

[34]  Noam Stern-Ginossar,et al.  An identical miRNA of the human JC and BK polyoma viruses targets the stress-induced ligand ULBP3 to escape immune elimination. , 2011, Cell host & microbe.

[35]  Arnaud Florins,et al.  Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human , 2007, Retrovirology.

[36]  Yongchang Cao,et al.  Marek's Disease Virus Type 1 MicroRNA miR-M3 Suppresses Cisplatin-Induced Apoptosis by Targeting SMAD2 of the Transforming Growth Factor Beta Signal Pathway , 2010, Journal of Virology.

[37]  D. Haussecker,et al.  miR-122 continues to blaze the trail for microRNA therapeutics. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[38]  W. Hauswirth,et al.  DICER1 Loss and Alu RNA Induce Age-Related Macular Degeneration via the NLRP3 Inflammasome and MyD88 , 2012, Cell.

[39]  V. Beneš,et al.  Kaposi's Sarcoma Herpesvirus microRNAs Target Caspase 3 and Regulate Apoptosis , 2011, PLoS pathogens.

[40]  Yajie Yang,et al.  Ago HITS-CLIP Expands Understanding of Kaposi's Sarcoma-associated Herpesvirus miRNA Function in Primary Effusion Lymphomas , 2012, PLoS pathogens.

[41]  H. Horvitz,et al.  Most Caenorhabditis elegans microRNAs Are Individually Not Essential for Development or Viability , 2007, PLoS genetics.

[42]  C. Rogel-Gaillard,et al.  Co-Expression of Host and Viral MicroRNAs in Porcine Dendritic Cells Infected by the Pseudorabies Virus , 2011, PloS one.

[43]  E. Robertson,et al.  miR-K12-7-5p Encoded by Kaposi's Sarcoma-Associated Herpesvirus Stabilizes the Latent State by Targeting Viral ORF50/RTA , 2011, PloS one.

[44]  P. Moore,et al.  Why do viruses cause cancer? Highlights of the first century of human tumour virology , 2010, Nature Reviews Cancer.

[45]  N. Buchon,et al.  RNAi: a defensive RNA-silencing against viruses and transposable elements , 2006, Heredity.

[46]  D. Ganem,et al.  Tandem array–based expression screens identify host mRNA targets of virus-encoded microRNAs , 2009, Nature Genetics.

[47]  D. Ganem,et al.  Regulation of KSHV lytic switch protein expression by a virus-encoded microRNA: an evolutionary adaptation that fine-tunes lytic reactivation. , 2009, Cell host & microbe.

[48]  Bryan R. Cullen,et al.  Analysis of the Interaction of Primate Retroviruses with the Human RNA Interference Machinery , 2007, Journal of Virology.

[49]  C. Croce,et al.  miR-155: On the Crosstalk Between Inflammation and Cancer , 2009, International reviews of immunology.

[50]  Comprehensive analysis of the KSHV MiRNA targetome by Ago-HITS-CLIP , 2012, Infectious Agents and Cancer.

[51]  Kelli L. Palmer,et al.  Multidrug-Resistant Enterococci Lack CRISPR-cas , 2010, mBio.

[52]  L. Xing,et al.  cis-Acting Effects on RNA Processing and Drosha Cleavage Prevent Epstein-Barr Virus Latency III BHRF1 Expression , 2011, Journal of Virology.

[53]  R. Braun,et al.  DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration , 2011, Nature.

[54]  B. Cullen Viruses and microRNAs , 2006, Nature Genetics.

[55]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[56]  D. Haussler,et al.  Posttranscriptional Crossregulation between Drosha and DGCR8 , 2009, Cell.

[57]  Zhonghan Li,et al.  MicroRNAs encoded by Kaposi's sarcoma‐associated herpesvirus regulate viral life cycle , 2010, EMBO reports.

[58]  C. Sander,et al.  Identification of microRNAs of the herpesvirus family , 2005, Nature Methods.

[59]  Guihua Sun,et al.  MicroRNAs and their potential involvement in HIV infection. , 2011, Trends in pharmacological sciences.

[60]  J. Abbott,et al.  A Kaposi's Sarcoma-Associated Herpesvirus-Encoded Ortholog of MicroRNA miR-155 Induces Human Splenic B-Cell Expansion in NOD/LtSz-scid IL2Rγnull Mice , 2011, Journal of Virology.

[61]  Mark D. Bennett,et al.  Insights into Polyomaviridae MicroRNA Function Derived from Study of the Bandicoot Papillomatosis Carcinomatosis Viruses , 2011, Journal of Virology.

[62]  Xianzhi Lin,et al.  Kaposi's Sarcoma-Associated Herpesvirus-Encoded MicroRNA miR-K12-11 Attenuates Transforming Growth Factor Beta Signaling through Suppression of SMAD5 , 2011, Journal of Virology.

[63]  B. Cullen,et al.  A Viral microRNA Cluster Strongly Potentiates the Transforming Properties of a Human Herpesvirus , 2011, PLoS pathogens.

[64]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[65]  D. Spector,et al.  A Human Cytomegalovirus-Encoded microRNA Regulates Expression of Multiple Viral Genes Involved in Replication , 2007, PLoS pathogens.

[66]  Gene W. Yeo,et al.  Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans , 2010, Nature Structural &Molecular Biology.

[67]  James M. Pipas,et al.  SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells , 2005, Nature.

[68]  I. Faraoni,et al.  miR-155 gene: a typical multifunctional microRNA. , 2009, Biochimica et biophysica acta.

[69]  N. Raab-Traub,et al.  Infection of Epstein–Barr virus in a gastric carcinoma cell line induces anchorage independence and global changes in gene expression , 2012, Proceedings of the National Academy of Sciences.

[70]  C. S. Sullivan,et al.  Kaposi's sarcoma herpes virus taps into a host microRNA regulatory network. , 2008, Cell host & microbe.

[71]  Jirí Vanícek,et al.  Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: Implications for latency , 2008, Proceedings of the National Academy of Sciences.

[72]  Howard Y. Chang,et al.  Molecular mechanisms of long noncoding RNAs. , 2011, Molecular cell.

[73]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[74]  R. Green,et al.  miRNA-Mediated Gene Silencing by Translational Repression Followed by mRNA Deadenylation and Decay , 2012, Science.

[75]  Anton J. Enright,et al.  Detecting microRNA binding and siRNA off-target effects from expression data , 2008, Nature Methods.

[76]  Toshiaki Watanabe,et al.  Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. , 2006, Genes & development.

[77]  R. Taft,et al.  An Insect Virus-Encoded MicroRNA Regulates Viral Replication , 2008, Journal of Virology.

[78]  Michael T. McManus,et al.  A resource for the conditional ablation of microRNAs in the mouse. , 2012, Cell reports.

[79]  J. Kutok,et al.  Spectrum of Epstein-Barr virus-associated diseases. , 2006, Annual review of pathology.

[80]  Y. Pekarsky,et al.  Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression , 2010, Proceedings of the National Academy of Sciences.

[81]  N. Raab-Traub,et al.  The Epstein-Barr Virus BART microRNAs target the pro-apoptotic protein Bim. , 2011, Virology.

[82]  J. Vogel,et al.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III , 2011, Nature.

[83]  Adi Stern,et al.  Self-targeting by CRISPR: gene regulation or autoimmunity? , 2010, Trends in genetics : TIG.

[84]  N. Yang,et al.  L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells , 2006, Nature Structural &Molecular Biology.

[85]  Bryan R. Cullen,et al.  The Viral and Cellular MicroRNA Targetome in Lymphoblastoid Cell Lines , 2012, PLoS pathogens.

[86]  A. Griffiths,et al.  Identification and Expression Analysis of Herpes B Virus-Encoded Small RNAs (cid:1) , 2022 .

[87]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[88]  H. Margalit,et al.  Cytomegalovirus microRNAs Facilitate Persistent Virus Infection in Salivary Glands , 2010, PLoS pathogens.

[89]  D. Kwong,et al.  An Epstein-Barr virus–encoded microRNA targets PUMA to promote host cell survival , 2008, The Journal of experimental medicine.

[90]  Noam Stern-Ginossar,et al.  Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. , 2009, Cell host & microbe.

[91]  J. Steitz,et al.  EBV and human microRNAs co‐target oncogenic and apoptotic viral and human genes during latency , 2012, The EMBO journal.

[92]  Qiang Deng,et al.  A human herpesvirus miRNA attenuates interferon signaling and contributes to maintenance of viral latency by targeting IKK ε , 2011 .

[93]  J. Burnside,et al.  MicroRNAs of Gallid and Meleagrid herpesviruses show generally conserved genomic locations and are virus-specific. , 2009, Virology.

[94]  J. Ziegelbauer,et al.  Regulation of Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Receptor Protein (TWEAKR) Expression by Kaposi's Sarcoma-Associated Herpesvirus MicroRNA Prevents TWEAK-Induced Apoptosis and Inflammatory Cytokine Expression , 2010, Journal of Virology.

[95]  C. S. Sullivan,et al.  Expanding the role of Drosha to the regulation of viral gene expression , 2011, Proceedings of the National Academy of Sciences.

[96]  B. Berkhout,et al.  Microprocessor, Setx, Xrn2, and Rrp6 Co-operate to Induce Premature Termination of Transcription by RNAPII , 2012, Cell.

[97]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[98]  Yufei Huang,et al.  Regulation of NF-κB inhibitor IκBα and viral replication by a KSHV microRNA , 2009, Nature Cell Biology.

[99]  A. Rice,et al.  Mini ways to stop a virus: microRNAs and HIV-1 replication. , 2011, Future virology.

[100]  W. Hammerschmidt,et al.  Micro RNAs of Epstein-Barr Virus Promote Cell Cycle Progression and Prevent Apoptosis of Primary Human B Cells , 2010, PLoS pathogens.

[101]  Yufei Huang,et al.  A Kaposi's Sarcoma-Associated Herpesvirus MicroRNA and Its Variants Target the Transforming Growth Factor β Pathway To Promote Cell Survival , 2012, Journal of Virology.

[102]  Margaret S. Ebert,et al.  Roles for MicroRNAs in Conferring Robustness to Biological Processes , 2012, Cell.

[103]  C. Thurner,et al.  Functional microRNA generated from a cytoplasmic RNA virus , 2010, Nucleic acids research.

[104]  B. tenOever,et al.  Noncanonical cytoplasmic processing of viral microRNAs. , 2010, RNA.

[105]  P. Ye,et al.  Prediction of conserved microRNAs from skin and mucosal human papillomaviruses , 2011, Archives of Virology.

[106]  K. Jeang,et al.  MicroRNAs and human retroviruses , 2011, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms.

[107]  Alberto Riva,et al.  Kaposi's Sarcoma-Associated Herpesvirus Encodes an Ortholog of miR-155 , 2007, Journal of Virology.

[108]  D. Bartel,et al.  Conserved Function of lincRNAs in Vertebrate Embryonic Development despite Rapid Sequence Evolution , 2011, Cell.

[109]  L. V. van Dyk,et al.  Mature and functional viral miRNAs transcribed from novel RNA polymerase III promoters. , 2010, RNA.

[110]  Subbaya Subramanian,et al.  MicroRNAs as gatekeepers of apoptosis , 2010, Journal of cellular physiology.

[111]  Nigel F. Delaney,et al.  Ultrafast Evolution and Loss of CRISPRs Following a Host Shift in a Novel Wildlife Pathogen, Mycoplasma gallisepticum , 2012, PLoS genetics.

[112]  J. Pipas,et al.  Complete Nucleotide Sequence of Polyomavirus SA12 , 2005, Journal of Virology.

[113]  J. Ziegelbauer,et al.  Kaposi's Sarcoma-Associated Herpesvirus MicroRNAs Target IRAK1 and MYD88, Two Components of the Toll-Like Receptor/Interleukin-1R Signaling Cascade, To Reduce Inflammatory-Cytokine Expression , 2012, Journal of Virology.

[114]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[115]  E. Berezikov,et al.  Small RNAs and the control of transposons and viruses in Drosophila. , 2009, Trends in microbiology.

[116]  J. Steitz,et al.  A primate herpesvirus uses the integrator complex to generate viral microRNAs. , 2011, Molecular cell.

[117]  D. Bartel,et al.  Compatibility with Killer Explains the Rise of RNAi-Deficient Fungi , 2011, Science.

[118]  D. Ganem,et al.  Viral latency and its regulation: lessons from the gamma-herpesviruses. , 2010, Cell host & microbe.