Streamline Embedding for 3D Vector Field Exploration

We propose a new technique for visual exploration of streamlines in 3D vector fields. We construct a map from the space of all streamlines to points in IRn based on the preservation of the Hausdorff metric in streamline space. The image of a vector field under this map is a set of 2-manifolds in IRn with characteristic geometry and topology. Then standard clustering methods applied to the point sets in IRn yield a segmentation of the original vector field. Our approach provides a global analysis of 3D vector fields which incorporates the topological segmentation but yields additional information. In addition to a pure segmentation, the established map provides a natural "parametrization” visualized by the manifolds. We test our approach on a number of synthetic and real-world data sets.

[1]  Filip Sadlo,et al.  Visualizing Lagrangian Coherent Structures and Comparison to Vector Field Topology , 2009, Topology-Based Methods in Visualization II.

[2]  David Banks,et al.  Image-guided streamline placement , 1996, SIGGRAPH.

[3]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[4]  Gerik Scheuermann,et al.  Streamline Predicates , 2006, IEEE Transactions on Visualization and Computer Graphics.

[5]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[6]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[7]  Carl-Fredrik Westin,et al.  Coloring of DT-MRI Fiber Traces Using Laplacian Eigenmaps , 2003, EUROCAST.

[8]  Frans Vos,et al.  Fast and reproducible fiber bundle selection in DTI visualization , 2005, VIS 05. IEEE Visualization, 2005..

[9]  Bernhard Preim,et al.  Map Displays for the Analysis of Scalar Data on Cerebral Aneurysm Surfaces , 2009, Comput. Graph. Forum.

[10]  Hans Hagen,et al.  Visualization of higher order singularities in vector fields , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[11]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[12]  David S. Ebert,et al.  Abstractive Representation and Exploration of Hierarchically Clustered Diffusion Tensor Fiber Tracts , 2008, Comput. Graph. Forum.

[13]  Hans-Peter Seidel,et al.  Visualizing Transport Structures of Time-Dependent Flow Fields , 2008, IEEE Computer Graphics and Applications.

[14]  Vivek Verma,et al.  A flow-guided streamline seeding strategy , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[15]  Carl-Fredrik Westin,et al.  Clustering Fiber Traces Using Normalized Cuts , 2004, MICCAI.

[16]  Wilfrid Lefer,et al.  Creating Evenly-Spaced Streamlines of Arbitrary Density , 1997, Visualization in Scientific Computing.

[17]  Bernhard Preim,et al.  Combining Map Displays and 3 D Visualizations for the Analysis of Scalar Data on Cerebral Aneurysm Surfaces , 2009 .

[18]  Alexandru Telea,et al.  Simplified representation of vector fields , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[19]  Martin Rumpf,et al.  Anisotropic nonlinear diffusion in flow visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[20]  Thomas Schultz,et al.  Feature Extraction for DW-MRI Visualization: The State of the Art and Beyond , 2011, Scientific Visualization: Interactions, Features, Metaphors.

[21]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Brian A. Wandell,et al.  Exploring connectivity of the brain's white matter with dynamic queries , 2005, IEEE Transactions on Visualization and Computer Graphics.

[23]  Martin Rumpf,et al.  Flow field clustering via algebraic multigrid , 2004, IEEE Visualization 2004.

[24]  Robert S. Laramee,et al.  The State of the Art , 2015 .

[25]  Jianbo Shi,et al.  Spectral segmentation with multiscale graph decomposition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[26]  David F. Tate,et al.  A Novel Interface for Interactive Exploration of DTI Fibers , 2009, IEEE Transactions on Visualization and Computer Graphics.

[27]  Guido Gerig,et al.  Towards a shape model of white matter fiber bundles using diffusion tensor MRI , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[28]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[29]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[30]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[31]  HesselinkLambertus,et al.  Representation and Display of Vector Field Topology in Fluid Flow Data Sets , 1989 .

[32]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[33]  H. Alt,et al.  Computing the Hausdorff Distance of Geometric Patterns and Shapes , 2003 .

[34]  Holger Theisel,et al.  On the Way Towards Topology-Based Visualization of Unsteady Flow , 2010, Eurographics.

[35]  Bernd Hamann,et al.  Construction of vector field hierarchies , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[36]  Carl-Fredrik Westin,et al.  White Matter Tract Clustering and Correspondence in Populations , 2005, MICCAI.

[37]  Anna Vilanova,et al.  Evaluation of fiber clustering methods for diffusion tensor imaging , 2005, VIS 05. IEEE Visualization, 2005..

[38]  G. Haller An objective definition of a vortex , 2004, Journal of Fluid Mechanics.

[39]  David H. Laidlaw,et al.  Identifying White-Matter Fiber Bundles in DTI Data Using an Automated Proximity-Based Fiber-Clustering Method , 2008, IEEE Transactions on Visualization and Computer Graphics.

[40]  Hans-Peter Seidel,et al.  Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[41]  Sunil Arya,et al.  ANN: library for approximate nearest neighbor searching , 1998 .

[42]  J. Hunt Vorticity and vortex dynamics in complex turbulent flows , 1987 .

[43]  Bernd Hamann,et al.  Improving Topological Segmentation of Three-dimensional Vector Fields , 2003, VisSym.