Computer Simulation of Microstructure Evolution in Low Carbon Sheet Steels

Models of microstructure evolution in steels are reviewed. The emphasis of the review is on low carbon sheet steels both hot-rolled and cold-rolled and annealed. First the state-of-the-art on industrial microstructure process models is presented. The individual model concepts for grain growth, recrystallization, precipitation and phase transformations are briefly discussed. The development from empirically-based models to physically-based models is identified as a key issue to have increased predictive capabilities for these models over a wider range of steel grades and operational conditions. The challenges in the development of the next generation of models are delineated. In particular, new aspects of microstructure evolution associated with novel processing routes and advanced high strength steels are evaluated. Further, the majority of the currently employed models are on the macro-scale but future microstructure models will increasingly be meso-scale models that predict actual microstructures rather than a number of average parameters (e.g. grain size, fraction transformed) to describe microstructure evolution.

[1]  Y. Bréchet,et al.  Isothermal growth kinetics of bainite in 0.5% C steels , 2001 .

[2]  P. A. Manohar,et al.  Grain growth predictions in microalloyed steels , 1996 .

[3]  T. DebRoy,et al.  Non-isothermal grain growth in metals and alloys , 2006 .

[4]  S. Zwaag,et al.  Modelling the Austenite to Ferrite Phase Transformation in Low Carbon Steels in Terms of the Interface Mobility , 2000 .

[5]  Minoru Umemoto,et al.  Computer Modelling of Phase Transformation from Work-hardened Austenite , 1992 .

[6]  M. Militzer,et al.  Ferrite nucleation and growth during continuous cooling , 1996 .

[7]  Yoshiyuki Watanabe,et al.  Modelling of Microstructural Evolution and Mechanical Properties of Steel Plates Produced by Thermo-Mechanical Control Process , 1992 .

[8]  A. Deschamps,et al.  Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel , 2001 .

[9]  W. Poole,et al.  Austenite formation during intercritical annealing , 2004 .

[10]  Yiyi Li,et al.  Coupled simulation of the influence of austenite deformation on the subsequent isothermal austenite–ferrite transformation , 2006 .

[11]  W. Liu A new theory and kinetic modeling of strain-induced precipitation of Nb(CN) in microalloyed austenite , 1995 .

[12]  J. Jonas,et al.  Mathematical Modeling of the Recrystallization Kineticsof Nb Microalloyed Steels , 2001 .

[13]  G. Haidemenopoulos,et al.  Simulation of intercritical annealing in low-alloy TRIP steels , 2000 .

[14]  J. Jonas,et al.  Measurement and modelling of the effects of precipitation on recrystallization under multipass deformation conditions , 1993 .

[15]  Kazuaki Sato,et al.  Computer Modeling of Microstructural Change and Strength of Low Carbon Steel in Hot Strip Rolling , 1987 .

[16]  S. Zwaag,et al.  Analysis of γ → α transformation in a Nb micro-alloyed C–Mn steel by phase field modelling , 2006 .

[17]  M. Hillert Diffusion and interface control of reactions in alloys , 1975 .

[18]  P. F. Morris,et al.  MetModel: microstructural evolution model for hot rolling and prediction of final product properties , 2001 .

[19]  Hsun Hu Grain growth in zone-refined iron , 1974 .

[20]  S. Nath,et al.  Non-isothermal Austenitisation Kinetics and Theoretical Determination of Intercritical Annealing Time for Dual-phase Steels , 1994 .

[21]  N. S. Mishra,et al.  Modelling of microstructural evolution during accelerated cooling of hot strip on the runout table , 1995 .

[22]  Y. Bréchet,et al.  Modeling recrystallization of microalloyed austenite: effect of coupling recovery, precipitation and recrystallization , 2002 .

[23]  G. Speich,et al.  Formation of Austenite During Intercritical Annealing of Dual-Phase Steels , 1981 .

[24]  M. Kumar,et al.  Competition between nucleation and early growth of ferrite from austenite-studies using cellular automaton simulations , 1998 .

[25]  C. M. Sellars,et al.  Mechanism and kinetics of strain induced precipitation of Nb(C,N) in austenite , 1992 .

[26]  C. Garcia,et al.  Formation of austenite in 1.5 pct Mn steels , 1981 .

[27]  E. B. Hawbolt,et al.  Modeling recovery and recrystallization kinetics in cold-rolled Ti-Nb stabilized interstitial-free steel , 1996 .

[28]  J. Jonas,et al.  Modelling the effect of deformation-induced vacancies on segregation and precipitation , 1994 .

[29]  J. K. Brimacombe,et al.  Microstructural engineering applied to the controlled cooling of steel wire rod: Part II. Microstructural evolution and mechanical properties correlations , 1991 .

[30]  Y. Lan,et al.  A cellular automaton model for austenite to ferrite transformation in carbon steel under non-equilibrium interface conditions , 2004 .

[31]  D. P. Koistinen,et al.  A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels , 1959 .

[32]  Monojit Dutta,et al.  Prediction of phase transformation and microstructure in steel using cellular automaton technique , 2004 .

[33]  Yiyi Li,et al.  A q-state Potts model-based Monte Carlo method used to model the isothermal austenite–ferrite transformation under non-equilibrium interface condition , 2005 .

[34]  O. Bouaziz,et al.  The Bainite Transformation Stage in the Processing of Trip-Aided Sheet Steels , 2004 .

[35]  Kazuaki Sato,et al.  Application of Mathematical Model for Predicting Microstructural Evolution to High Carbon Steels. , 1992 .

[36]  R. Vandermeer Modeling diffusional growth during austenite decomposition to ferrite in polycrystalline FeC alloys , 1990 .

[37]  M. Rappaz,et al.  Modelling of reaustenitization from the pearlite structure in steel , 1998 .

[38]  M. F. Ashby,et al.  A process model for age hardening of aluminium alloys—I. The model , 1990 .

[39]  S. Zwaag,et al.  Three-dimensional phase field modelling of the austenite-to-ferrite transformation , 2006 .

[40]  G. Purdy,et al.  Carbide Dissolution and Austenite Growth in the Intercritical Annealing of Fe–C–Mn Dual Phase Steels , 1984 .

[41]  Yoshio Waseda,et al.  Structural changes in amorphous Pd77Si17Cu6 due to cold rolling and low temperature annealing , 1979 .

[42]  田村 今男 Thermomechanical processing of high-strength low-alloy steels , 1988 .

[43]  F. Incropera,et al.  Three-Dimensional Considerations of Unidirectional Solidification in a Binary Liquid , 1993 .

[44]  M. Rappaz,et al.  A two-dimensional diffusion model for the prediction of phase transformations: Application to austenitization and homogenization of hypoeutectoid Fe-C steels , 1997 .

[45]  Yiyi Li,et al.  Monte carlo-method simulation of the deformation-induced ferrite transformation in the Fe-C system , 2004 .

[46]  H.N. Han,et al.  Model for cooling and phase transformation behaviour of transformation induced plasticity steel on runout table in hot strip mill , 2001 .

[47]  P. A. Manohar,et al.  Five Decades of the Zener Equation , 1998 .

[48]  H. K. D. H. Bhadeshia,et al.  KINETICS OF THE SIMULTANEOUS DECOMPOSITION OF AUSTENITE INTO SEVERAL TRANSFORMATION PRODUCTS , 1997 .

[49]  Yiyi Li,et al.  Mesoscale simulation of deformed austenite decomposition into ferrite by coupling a cellular automaton method with a crystal plasticity finite element model , 2005 .

[50]  I. Steinbach,et al.  Simulation of the γ-α-transformation using the phase-field method , 2001 .

[51]  C. Capdevila,et al.  Modelling of Kinetics of Austenite Formation in Steels with Different Initial Microstructures , 2001 .

[52]  M. Pietrzyk,et al.  An integrated computer model with applications for austenite-to-ferrite transformation during hot deformation of Nb-microalloyed steels , 2002 .

[53]  J. Jonas Effect of Quench and Interpass Time on Dynamic and Static Softening during Hot Rolling , 2005 .

[54]  Dong-Hee Yeon,et al.  A phase field study for ferrite–austenite transitions under para-equilibrium , 2001 .

[55]  C. M. Sellars,et al.  Modelling Microstructure and Its Effects during Multipass Hot Rolling , 1992 .

[56]  Modelling the Evolution of the Microstructure of a Nb Steel , 1996 .

[57]  D. Matlock,et al.  Recent developments in low-carbon sheet steels , 2002 .

[58]  M. Militzer,et al.  Modelling of Microstructure Evolution during Hot Rolling of a 780 MPa High Strength Steel , 2005 .

[59]  A. Deschamps,et al.  Influence of predeformation and agEing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress , 1998 .

[60]  M. Militzer,et al.  Austenite grain growth kinetics in Al-killed plain carbon steels , 1996 .

[61]  W. Poole,et al.  Precipitation hardening of HSLA steels , 1998 .

[62]  S. Zwaag,et al.  Analysis of the γ → α transformation in a C-Mn steel by phase-field modeling , 2005 .

[63]  P. Uranga,et al.  Modeling of Austenite Grain Size Distribution in Nb Microalloyed Steels Processed by Thin Slab Casting and Direct Rolling (TSDR) Route , 2004 .

[64]  I. Steinbach,et al.  The multiphase-field model with an integrated concept for modelling solute diffusion , 1998 .

[65]  Y. Bréchet,et al.  Recovery of AlMg alloys: Flow stress and strain-hardening properties , 1998 .

[66]  J. Ågren Computer simulations of the austenite/ferrite diffusional transformations in low alloyed steels , 1982 .

[67]  J. Ågren,et al.  On the formation of Widmanstätten ferrite in binary Fe–C – phase-field approach , 2004 .

[68]  H. Aaronson,et al.  Growth kinetics of grain boundary ferrite allotriomorphs in Fe-C-X alloys , 1977 .

[69]  Prediction of Microstructure and Mechanical Properties of Hot Rolled Steel Strip: Part I ‐ Description of Models , 2004 .

[70]  M. Umemoto,et al.  Transformation Kinetics of Bainite during Isothermal Holding and Continuous Cooling , 1982 .

[71]  K. C. Russell,et al.  Precipitation at interphase boundaries , 1978 .

[72]  R. Kawalla,et al.  Determination and Modelling of the Influence of Cooling in the Coil on the Mechanical Properties of Hot Strip Steels with Bainite , 2005 .

[73]  T. Senuma,et al.  Modelling Upper and Lower Bainite Trasformation in Steels , 2005 .

[74]  C. M. Sellars,et al.  Modelling the kinetics of strain induced precipitation in Nb microalloyed steels , 2001 .

[75]  Yuri F. Titovets,et al.  Modelling of austenite decomposition of hot‐rolled plain carbon steels under complex cooling conditions , 2000 .

[76]  John J. Jonas,et al.  Mathematical Modeling of the Mean Flow Stress, Fractional Softening and Grain Size during the Hot Strip Rolling of C-Mn Steels , 1996 .

[77]  T. R. Meadowcroft,et al.  Microstructural model for hot strip rolling of high-strength low-alloy steels , 2000 .

[78]  Joseph D. Robson,et al.  Modelling the overlap of nucleation, growth and coarsening during precipitation , 2004 .

[79]  A. DeArdo,et al.  Niobium in modern steels , 2003 .

[80]  J. Yanagimoto,et al.  Mathematical Modelling for Microstructure Evolution and Development of Ultra Fine Grained Plain Carbon Steel in a Tandem Hot Strip Mill , 2005 .

[81]  M. Umemoto,et al.  Prediction of hardenability effects from isothermal transformation kinetics , 1980 .

[82]  M. Militzer,et al.  Application of solute drag theory to model ferrite formation in multiphase steels , 2005 .

[83]  P. Hodgson,et al.  A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels , 1992 .

[84]  H. Bhadeshia,et al.  Bainite transformation kinetics Part 1 Modified model , 1992 .

[85]  P. Hodgson,et al.  Microstructure modelling for property prediction and control , 1996 .

[86]  A phase-field simulation of austenite to ferrite transformation kinetics in low carbon steels , 2006 .

[87]  S. Zwaag,et al.  Kinetics of γ → α phase transformation in Fe-Mn alloys containing low manganese , 1998 .

[88]  Masayoshi Suehiro,et al.  Mathematical Models for Predicting Microstructural Evolution and Mechanical Properties of Hot Strips , 1992 .

[89]  Wheeler,et al.  Phase-field model for isothermal phase transitions in binary alloys. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[90]  M. Umemoto,et al.  A Model for Recovery and Recrystallization of Hot Deformed Austenite Considering Structural Heterogeneity. , 1992 .

[91]  M. Militzer A Synchrotron Look at Steel , 2002, Science.

[92]  M. Militzer,et al.  Towards an austenite decomposition model for TRIP steels , 2002 .

[93]  S. Torizuka,et al.  Modeling of Transformation Behavior and Compositional Partitioning in TRIP Steel , 1996 .

[94]  Takehide Senuma,et al.  Present Status of and Future Prospects for Precipitation Research in the Steel Industry , 2002 .

[95]  M. Lusk,et al.  On the rule of additivity in phase transformation kinetics , 1997 .

[96]  G. Haidemenopoulos,et al.  Modelling of Transformations in TRIP Steels , 2004 .

[97]  S. Medina,et al.  Static recrystallization modelling of hot deformed microalloyed steels at temperatures below the critical temperature , 1996 .

[98]  S. Zwaag,et al.  A single-grain approach applied to the modeling of recrystallization kinetics for cold-rolled single-phase metals , 2004 .

[99]  G. Spanos,et al.  Bainite viewed three different ways , 1990 .

[100]  John H. Beynon Modelling the development of microstructure during hot rolling and cooling , 1998 .

[101]  W. Liu Computer simulation of VC , 1993, Metallurgical and Materials Transactions A.

[102]  G. Saindrenan,et al.  A study of the recrystallization of an IF steel by kinetics models , 2002 .

[103]  J. Ågren,et al.  The phase-field approach and solute drag modeling of the transition to massive γ → α transformation in binary Fe-C alloys , 2003 .