Design and Evaluation of Techniques to Utilize Implicit Rating Data in Complex Information Systems.

Research in personalization, including recommender systems, focuses on applications such as in online shopping malls and simple information systems. These systems consider user profile and item information obtained from data explicitly entered by users - where it is possible to classify items involved and to make personalization based on a direct mapping from user or user group to item or item group. However, in complex, dynamic, and professional information systems, such as Digital Libraries, additional capabilities are needed to achieve personalization to support their distinctive features: large numbers of digital objects, dynamic updates, sparse rating data, biased rating data on specific items, and challenges in getting explicit rating data from users. In this report, we present techniques for collecting, storing, processing, and utilizing implicit rating data of Digital Libraries for analysis and decision support. We present our pilot study to find virtual user groups using implicit rating data. We demonstrate the effectiveness of implicit rating data for characterizing users and finding virtual user communities, through statistical hypothesis testing. Further, we describe a visual data mining tool named VUDM (Visual User model Data Mining tool) that utilizes implicit rating data. We provide the results of formative evaluation of VUDM and discuss the problems raised and plans for further studies.

[1]  E.A. Fox,et al.  ETANA-DL: managing complex information applications - an archaeology digital library , 2004, Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries, 2004..

[2]  David M. Nichols,et al.  DEBORA: Developing an Interface to Support Collaboration in a Digital Library , 2000, ECDL.

[3]  Edward A. Fox,et al.  Networked Digital Library of Theses and Dissertations (「ディジタル図書館」ワークショップ第15回(奈良先端科学技術大学院大学.1999年7月19日)) , 1999 .

[4]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[5]  Edward A. Fox,et al.  Visualizing User Communities and Usage Trends of Digital Libraries Based on User Tracking Information , 2006, ICADL.

[6]  Edward A. Fox,et al.  Effectiveness of Implicit Rating Data on Characterizing Users in Complex Information Systems , 2005, ECDL.

[7]  Ravi Kumar,et al.  Structure and evolution of blogspace , 2004, CACM.

[8]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[9]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .

[10]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[11]  C. Lee Giles,et al.  Probabilistic user behavior models , 2003, Third IEEE International Conference on Data Mining.

[12]  Dawid Weiss,et al.  Conceptual Clustering Using Lingo Algorithm: Evaluation on Open Directory Project Data , 2004, Intelligent Information Systems.

[13]  Gerhard Widmer,et al.  Learning in the Presence of Concept Drift and Hidden Contexts , 1996, Machine Learning.

[14]  Hsinchun Chen,et al.  Criminal network analysis and visualization , 2005, CACM.

[15]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[16]  Hans-Peter Kriegel,et al.  Ieee Transactions on Knowledge and Data Engineering Probabilistic Memory-based Collaborative Filtering , 2022 .

[17]  Dawid Weiss,et al.  A concept-driven algorithm for clustering search results , 2005, IEEE Intelligent Systems.

[18]  Cass R. Sunstein,et al.  Democracy and filtering , 2004, CACM.

[19]  Thomas W. Malone,et al.  Intelligent Information Sharing Systems , 1986 .

[20]  H. Rex Hartson,et al.  Developing user interfaces: ensuring usability through product & process , 1993 .

[21]  Hussein Suleman Introduction to the open archives initiative protocol for metadata harvesting , 2002, JCDL '02.

[22]  Geoffrey I. Webb,et al.  # 2001 Kluwer Academic Publishers. Printed in the Netherlands. Machine Learning for User Modeling , 1999 .

[23]  David G. Stork,et al.  Pattern Classification , 1973 .

[24]  R. Lyman Ott.,et al.  An introduction to statistical methods and data analysis , 1977 .

[25]  John F. Roddick,et al.  Guiding knowledge discovery through interactive data mining , 2003 .

[26]  Hock-Liew Eng,et al.  Networked digital library of theses and dissertations , 2005 .

[27]  Danah Boyd,et al.  Social network fragments: an interactive tool for exploring digital social connections , 2003, SIGGRAPH '03.

[28]  G. McCalla,et al.  Mining Implicit Ratings for Focused Collaborative Filtering for Paper Recommendations , 2003 .

[29]  James J. Thomas,et al.  Visualizing the non-visual: spatial analysis and interaction with information from text documents , 1995, Proceedings of Visualization 1995 Conference.

[30]  David M. Nichols,et al.  Implicit Rating and Filtering , 1998 .

[31]  Thomas H. Wonnacott,et al.  Introductory Statistics , 2007, Technometrics.

[32]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[33]  Edward A. Fox,et al.  Interest-Based User Grouping Model for Collaborative Filtering in Digital Libraries , 2004, ICADL.

[34]  Danah Boyd,et al.  Vizster: visualizing online social networks , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..