Effects of Oxygen and Light Intensity on Transcriptome Expression in Rhodobacter sphaeroides 2.4.1

The roles of oxygen and light on the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1 have been well studied over the past 50 years. More recently, the effects of oxygen and light on gene regulation have been shown to involve the interacting redox chains present in R. sphaeroides under diverse growth conditions, and many of the redox carriers comprising these chains have been well studied. However, the expression patterns of those genes encoding these redox carriers, under aerobic and anaerobic photosynthetic growth, have been less well studied. Here, we provide a transcriptional analysis of many of the genes comprising the photosynthesis lifestyle, including genes corresponding to many of the known regulatory elements controlling the response of this organism to oxygen and light. The observed patterns of gene expression are evaluated and discussed in light of our knowledge of the physiology of R. sphaeroides under aerobic and photosynthetic growth conditions. Finally, this analysis has enabled to us go beyond the traditional patterns of gene expression associated with the photosynthesis lifestyle and to consider, for the first time, the full complement of genes responding to oxygen, and variations in light intensity when growing photosynthetically. The data provided here should be considered as a first step in enabling one to model electron flow in R. sphaeroides 2.4.1.

[1]  Lu Lu,et al.  The genetic structure of recombinant inbred mice: high-resolution consensus maps for complex trait analysis , 2001, Genome Biology.

[2]  S Kaplan,et al.  Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene , 1995, Journal of bacteriology.

[3]  U. Neveling,et al.  Distinct and differently regulated Mo‐dependent nitrogen‐fixing systems evolved for heterocysts and vegetative cells of Anabaena variabilis ATCC 29413: characterization of the fdxH1/2 gene regions as part of the nif1/2 gene clusters , 1995, Molecular microbiology.

[4]  S. Kaplan,et al.  Redox signaling: globalization of gene expression , 2000, The EMBO journal.

[5]  S. Kaplan,et al.  Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase , 1995, Journal of bacteriology.

[6]  Carl E. Bauer,et al.  AppA Is a Blue Light Photoreceptor that Antirepresses Photosynthesis Gene Expression in Rhodobacter sphaeroides , 2002, Cell.

[7]  S. Kaplan,et al.  From redox flow to gene regulation: role of the PrrC protein of Rhodobacter sphaeroides 2.4.1. , 2000, Biochemistry.

[8]  H. Mizoguchi,et al.  A transcription factor with a leucine-zipper motif involved in light-dependent inhibition of expression of the puf operon in the photosynthetic bacterium Rhodobacter sphaeroides. , 1996, Plant & cell physiology.

[9]  S. Kaplan,et al.  Role of the fnrL Gene in Photosystem Gene Expression and Photosynthetic Growth of Rhodobacter sphaeroides 2.4.1 , 1998, Journal of bacteriology.

[10]  S. Kaplan,et al.  A Novel Mechanism for the Regulation of Photosynthesis Gene Expression by the TspO Outer Membrane Protein of Rhodobacter sphaeroides 2.4.1* , 1999, The Journal of Biological Chemistry.

[11]  G. Kunze,et al.  Regulation of the AEFG1 gene, a mitochondrial elongation factor G from the dimorphic yeast Arxula adeninivorans LS3 , 2001, Current Genetics.

[12]  T. Donohue,et al.  Phenotypic and genetic characterization of cytochrome c2 deficient mutants of Rhodobacter sphaeroides. , 1988, Biochemistry.

[13]  Govindjee Energy conversion by plants and bacteria , 1982 .

[14]  P. Kiley,et al.  Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. , 1988, Microbiological reviews.

[15]  T. Donohue,et al.  Expression of the Rhodobacter sphaeroides cytochrome c2 structural gene , 1989, Journal of bacteriology.

[16]  G. Makhatadze,et al.  Bacterial cold-shock proteins , 2002, Cellular and Molecular Life Sciences CMLS.

[17]  F. Daldal,et al.  The membrane-attached electron carrier cytochrome cy from Rhodobacter sphaeroides is functional in respiratory but not in photosynthetic electron transfer. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  P. McGlynn,et al.  A putative anaerobic coproporphyrinogen III oxidase in Rhodobacter sphaeroides. II. Analysis of a region of the genome encoding hemF and the puc operon , 1992, Molecular microbiology.

[19]  E. Neidle,et al.  Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes , 1993, Journal of bacteriology.

[20]  P. Kiley,et al.  Posttranscriptional control of puc operon expression of B800-850 light-harvesting complex formation in Rhodobacter sphaeroides , 1989, Journal of bacteriology.

[21]  I. Horne,et al.  Manganous ions suppress photosynthesis gene expression in Rhodobacter sphaeroides. , 1998, Microbiology.

[22]  S. Kaplan,et al.  The Default State of the Membrane-Localized Histidine Kinase PrrB of Rhodobacter sphaeroides 2.4.1 Is in the Kinase-Positive Mode , 2001, Journal of bacteriology.

[23]  J. Chory,et al.  Light-dependent regulation of the synthesis of soluble and intracytoplasmic membrane proteins of Rhodopseudomonas sphaeroides , 1983, Journal of bacteriology.

[24]  J. Hearst,et al.  Regulation of expression of genes for light-harvesting antenna proteins LH-I and LH-II; reaction center polypeptides RC-L, RC-M, and RC-H; and enzymes of bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus by light and oxygen. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[25]  S. Kaplan,et al.  TspO as a Modulator of the Repressor/Antirepressor (PpsR/AppA) Regulatory System in Rhodobacter sphaeroides 2.4.1 , 2001, Journal of bacteriology.

[26]  S Kaplan,et al.  Differential carotenoid composition of the B875 and B800-850 photosynthetic antenna complexes in Rhodobacter sphaeroides 2.4.1: involvement of spheroidene and spheroidenone in adaptation to changes in light intensity and oxygen availability , 1996, Journal of bacteriology.

[27]  T. Donohue,et al.  Cloning and expression of the Rhodobacter sphaeroides reaction center H gene , 1986, Journal of bacteriology.

[28]  J. M. Pemberton,et al.  Sequencing, chromosomal inactivation, and functional expression in Escherichia coli of ppsR, a gene which represses carotenoid and bacteriochlorophyll synthesis in Rhodobacter sphaeroides , 1994, Journal of bacteriology.

[29]  T. Donohue,et al.  Evidence for two promoters for the cytochrome c2 gene (cycA) of Rhodobacter sphaeroides , 1991, Journal of bacteriology.

[30]  F. Daldal,et al.  Mobile Cytochrome c2 and Membrane-Anchored Cytochrome cy Are Both Efficient Electron Donors to the cbb3- andaa3-Type Cytochrome cOxidases during Respiratory Growth of Rhodobacter sphaeroides , 2001, Journal of bacteriology.

[31]  S. Kaplan,et al.  Interacting Regulatory Circuits Involved in Orderly Control of Photosynthesis Gene Expression in Rhodobacter sphaeroides 2.4.1 , 2000, Journal of bacteriology.

[32]  S. Kaplan,et al.  The cbb3 terminal oxidase of Rhodobacter sphaeroides 2.4.1: structural and functional implications for the regulation of spectral complex formation. , 1999, Biochemistry.

[33]  Tabita Fr,et al.  A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation , 1996 .

[34]  R. Niederman,et al.  Photosynthetic membrane development in Rhodopseudomonas sphaeroides. Spectral and kinetic characterization of redox components of light-driven electron flow in apparent photosynthetic membrane growth initiation sites. , 1985, The Journal of biological chemistry.

[35]  Judith P. Armitage,et al.  The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1 , 2004, Photosynthesis Research.

[36]  P. Hallenbeck,et al.  Phosphoribulokinase activity and regulation of CO2 fixation critical for photosynthetic growth of Rhodobacter sphaeroides , 1990, Journal of bacteriology.

[37]  Judith P Armitage,et al.  The third chemotaxis locus of Rhodobacter sphaeroides is essential for chemotaxis , 2002, Molecular microbiology.

[38]  S. Kaplan,et al.  Complex regulatory activities associated with the histidine kinase PrrB in expression of photosynthesis genes in Rhodobacter sphaeroides 2.4.1 , 1996, Journal of bacteriology.

[39]  M. Choudhary,et al.  Respiratory pathways of Rhodobacter sphaeroides 2.4.1(T): identification and characterization of genes encoding quinol oxidases. , 2000, FEMS microbiology letters.

[40]  B. Barquera,et al.  The cbb3-type cytochrome c oxidase from Rhodobacter sphaeroides, a proton-pumping heme-copper oxidase. , 1998, Biochimica et biophysica acta.

[41]  S. Kaplan,et al.  prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides , 1994, Journal of bacteriology.

[42]  M. Choudhary,et al.  DNA sequence analysis of the photosynthesis region of Rhodobacter sphaeroides 2.4.1T , 2000 .

[43]  M. Choudhary,et al.  A Second and Unusual pucBA Operon of Rhodobacter sphaeroides 2.4.1: Genetics and Function of the Encoded Polypeptides , 2003, Journal of bacteriology.

[44]  J. K. Lee,et al.  Isolation and characterization of trans-acting mutations involved in oxygen regulation of puc operon transcription in Rhodobacter sphaeroides , 1992, Journal of bacteriology.

[45]  A. Crofts,et al.  Cloning and DNA sequencing of the fbc operon encoding the cytochrome bc1 complex from Rhodobacter sphaeroides. Characterization of fbc deletion mutants and complementation by a site-specific mutational variant. , 1990, European journal of biochemistry.

[46]  S. Kaplan,et al.  Generalized approach to the regulation and integration of gene expression , 2001, Molecular microbiology.

[47]  P. McGlynn,et al.  Genetic analysis of the bchC and bchA genes of Rhodobacter sphaeroides , 2004, Molecular and General Genetics MGG.

[48]  S. Kaplan,et al.  appA, a novel gene encoding a trans-acting factor involved in the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1 , 1995, Journal of bacteriology.

[49]  F. Tabita,et al.  Independent regulation of synthesis of form I and form II ribulose bisphosphate carboxylase-oxygenase in Rhodopseudomonas sphaeroides , 1986, Journal of bacteriology.

[50]  S. Kaplan,et al.  AppA, a Redox Regulator of Photosystem Formation in Rhodobacter sphaeroides 2.4.1, Is a Flavoprotein , 1998, The Journal of Biological Chemistry.

[51]  S. Kaplan,et al.  Oxygen Regulation of the ccoN Gene Encoding a Component of the cbb3 Oxidase inRhodobacter sphaeroides 2.4.1T: Involvement of the FnrL Protein , 1998, Journal of bacteriology.

[52]  J. K. Lee,et al.  Transcriptional regulation of puc operon expression in Rhodobacter sphaeroides. Involvement of an integration host factor-binding sequence. , 1993, The Journal of biological chemistry.

[53]  S Kaplan,et al.  Intracellular localization of phospholipid transfer activity in Rhodopseudomonas sphaeroides and a possible role in membrane biogenesis , 1985, Journal of bacteriology.

[54]  C. Gualerzi,et al.  Transcriptional and post-transcriptional control of cold-shock genes. , 2003, Journal of molecular biology.

[55]  R. Gennis,et al.  Cloning, sequencing and deletion from the chromosome of the gene encoding subunit I of the aa3‐type cytochrome c oxidase of Rhodobacter sphaeroides , 1992, Molecular microbiology.

[56]  I. Horne,et al.  Domain Structure, Oligomeric State, and Mutational Analysis of PpsR, the Rhodobacter sphaeroides Repressor of Photosystem Gene Expression , 2000, Journal of bacteriology.

[57]  J. Hearst,et al.  Oxygen-regulated mRNAs for light-harvesting and reaction center complexes and for bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus during the shift from anaerobic to aerobic growth , 1986, Journal of bacteriology.

[58]  A. Revzin,et al.  Cytochrome aa3 of Rhodobacter sphaeroides as a model for mitochondrial cytochrome c oxidase. The coxII/coxIII operon codes for structural and assembly proteins homologous to those in yeast. , 1992, The Journal of biological chemistry.

[59]  S. Kaplan,et al.  Control of Photosystem Formation inRhodobacter sphaeroides , 1998, Journal of bacteriology.

[60]  M. Marahiel,et al.  Bacterial Cold Shock Responses , 2003, Science progress.

[61]  R. Cogdell,et al.  Early steps in carotenoid biosynthesis: sequences and transcriptional analysis of the crtI and crtB genes of Rhodobacter sphaeroides and overexpression and reactivation of crtI in Escherichia coli and R. sphaeroides , 1994, Journal of bacteriology.

[62]  F. Tabita,et al.  Differential Expression of the CO2 Fixation Operons of Rhodobacter sphaeroides by the Prr/Reg Two-Component System during Chemoautotrophic Growth , 2002, Journal of bacteriology.

[63]  S. Kaplan,et al.  Digging deeper: uncovering genetic loci which modulate photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. , 2003, Microbiology.

[64]  F. Daldal,et al.  A novel membrane‐associated c‐type cytochrome, cyt cy, can mediate the photosynthetic growth of Rhodobacter capsulatus and Rhodobacter sphaeroides. , 1993, The EMBO journal.

[65]  A. Tsygankov,et al.  Regulation of nitrogenase in the photosynthetic bacterium Rhodobacter sphaeroides containing draTG and nifHDK genes from Rhodobacter capsulatus. , 2001, Canadian journal of microbiology.

[66]  A. S. Lynch,et al.  Regulation of Gene Expression in Escherichia coli , 1996, Springer US.

[67]  S. Kaplan,et al.  A Sensory Transducer Homologous to the Mammalian Peripheral-type Benzodiazepine Receptor Regulates Photosynthetic Membrane Complex Formation in Rhodobacter sphaeroides 2.4.1 (*) , 1995, The Journal of Biological Chemistry.

[68]  I. Horne,et al.  Identification and in vivo characterization of PpaA, a regulator of photosystem formation in Rhodobacter sphaeroides. , 2003, Microbiology.

[69]  M. Sabaty,et al.  mgpS, a complex regulatory locus involved in the transcriptional control of the puc and puf operons in Rhodobacter sphaeroides 2.4.1 , 1996, Journal of bacteriology.

[70]  S. Kaplan,et al.  Isolation of regulatory mutants in photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1 and partial complementation of a PrrB mutant by the HupT histidine-kinase. , 1995, Microbiology.

[71]  S. Kaplan,et al.  Evidence for the role of redox carriers in photosynthesis gene expression and carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1 , 1997, Journal of bacteriology.

[72]  Mark Gomelsky,et al.  A single flavoprotein, AppA, integrates both redox and light signals in Rhodobacter sphaeroides , 2002, Molecular microbiology.

[73]  S. Kaplan,et al.  Interdependent Expression of the ccoNOQP-rdxBHIS Loci in Rhodobacter sphaeroides 2.4.1 , 2002, Journal of bacteriology.

[74]  T. Donohue,et al.  delta-Aminolevulinate couples cycA transcription to changes in heme availability in Rhodobacter sphaeroides. , 1992, Journal of molecular biology.

[75]  T. Donohue,et al.  Cloning, DNA sequence, and expression of the Rhodobacter sphaeroides cytochrome c2 gene , 1986, Journal of bacteriology.

[76]  C. Hunter,et al.  Physical Mapping of bchG, orf427, andorf177 in the Photosynthesis Gene Cluster ofRhodobacter sphaeroides: Functional Assignment of the Bacteriochlorophyll Synthetase Gene , 2000, Journal of bacteriology.

[77]  J. Armitage,et al.  Tactic Responses to Oxygen in the Phototrophic Bacterium Rhodobacter sphaeroides WS8N , 2002, Journal of bacteriology.

[78]  C. Bauer,et al.  Characterization of a light-responding trans-activator responsible for differentially controlling reaction center and light-harvesting-I gene expression in Rhodobacter capsulatus , 1994, Journal of bacteriology.

[79]  S. Kaplan,et al.  Genetic evidence that PpsR from Rhodobacter sphaeroides 2.4.1 functions as a repressor of puc and bchF expression , 1995, Journal of bacteriology.

[80]  F. Tabita,et al.  Nucleotide sequence, transcriptional analysis, and expression of genes encoded within the form I CO2 fixation operon of Rhodobacter sphaeroides. , 1991, The Journal of biological chemistry.

[81]  T. Donohue,et al.  Transcriptional analysis of puf operon expression in Rhodobacter sphaeroides 2.4.1 and an intercistronic transcription terminator mutant. , 1989, The Journal of biological chemistry.

[82]  S. Kaplan,et al.  TspO of Rhodobacter sphaeroides , 2000, The Journal of Biological Chemistry.

[83]  C. Hunter,et al.  A putative anaerobic coproporphyrinogen III oxidase in Rhodobacter sphaeroides. I. Molecular cloning, transposon mutagenesis and sequence analysis of the gene , 1992, Molecular microbiology.

[84]  R. Gennis,et al.  Spectroscopic and genetic evidence for two heme-Cu-containing oxidases in Rhodobacter sphaeroides , 1992, Journal of bacteriology.