Nanomechanical Architecture of Strained Bilayer Thin Films: From Design Principles to Experimental Fabrication

Figure 1. SEM image of nanoarchitectures fabricated from strained Si/SiGe bi-layer films. (a) Nanorings with a thickness of 80 nm, radius of ~3.0 μm, and width of 3 μm; (b) nanodrill with a thickness of 110 nm, radius of ~2.4 μm, and width of 10 μm; and (c) nanocoil with a thickness of 110 nm, radius of ~2.4 μm, and width of 2 μm. In general, we can vary the thickness from 10 nm to 200 nm and dimensions from 20 nm to 100 μm. By Minghuang Huang, Carl Boone, Michelle Roberts, Don E. Savage, Max G. Lagally, Nakul Shaji, Hua Qin, Robert Blick, John A. Nairn and Feng Liu

[1]  J. Gilman,et al.  Nanotechnology , 2001 .

[2]  M. Lagally,et al.  Local strain-mediated chemical potential control of quantum dot self-organization in heteroepitaxy. , 2004, Physical review letters.

[3]  S. Timoshenko,et al.  Analysis of Bi-Metal Thermostats , 1925 .

[4]  H. Dai,et al.  Recent Advances in Methods of Forming Carbon Nanotubes , 2004 .

[5]  T. Tokuda,et al.  SiGe/Si "Micro-Origami" Epitaxial MEMS Device on SOI Substrate , 2004, 2006 International SiGe Technology and Device Meeting.

[6]  M. Lagally,et al.  Bending of nanoscale ultrathin substrates by growth of strained thin films and islands , 2005 .

[7]  D. Grützmacher,et al.  Freestanding SiGe/Si/Cr and SiGe/Si/SixNy/Cr microtubes , 2004 .

[8]  Li Zhang,et al.  Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts , 2005 .

[9]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[10]  Oliver G. Schmidt,et al.  Three-dimensional nano-objects evolving from a two-dimensional layer technology , 2001 .

[11]  Oliver G. Schmidt,et al.  Self-assembled nanoholes, lateral quantum-dot molecules, and rolled-up nanotubes , 2002 .

[12]  Oliver G. Schmidt,et al.  Diameter scalability of rolled-up In(Ga)As/GaAs nanotubes , 2002 .

[13]  M. A. Putyato,et al.  Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays , 2000 .

[14]  O. Schmidt,et al.  Nanotechnology: Thin solid films roll up into nanotubes , 2001, Nature.

[15]  M. Lagally,et al.  Nanomechanics: Response of a strained semiconductor structure , 2002, Nature.

[16]  K. Kubota,et al.  Strain-driven self-positioning of micromachined structures , 2001 .

[17]  Yong Ding,et al.  Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts , 2004, Science.

[18]  Yuan-Yu Tsai,et al.  Ellipse sampling for Monte Carlo applications , 2004 .

[19]  O. Schmidt,et al.  Semiconductor tubes, rods and rings of nanometer and micrometer dimension , 2002 .

[20]  Andreas Schramm,et al.  Lithographically defined metal-semiconductor-hybrid nanoscrolls , 2005 .

[21]  M. Lagally,et al.  Nanostressors and the nanomechanical response of a thin silicon film on an insulator. , 2002, Physical review letters.