Sparse, adaptive Smolyak quadratures for Bayesian inverse problems
暂无分享,去创建一个
[1] Jean-Paul Calvi,et al. On the Lebesgue constant of Leja sequences for the unit disk and its applications to multivariate interpolation , 2011, J. Approx. Theory.
[2] Raúl Tempone,et al. Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..
[3] Claude Jeffrey Gittelson. Adaptive wavelet methods for elliptic partial differential equations with random operators , 2011 .
[4] C. Schwab,et al. Sparse Adaptive Approximation of High Dimensional Parametric Initial Value Problems , 2013 .
[5] Christoph Schwab,et al. Sparse Approximation Algorithms for High Dimensional Parametric Initial Value Problems , 2012, HPSC.
[6] Albert Cohen,et al. High-Dimensional Adaptive Sparse Polynomial Interpolation and Applications to Parametric PDEs , 2014, Found. Comput. Math..
[7] Y. Marzouk,et al. A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .
[8] R. Ghanem,et al. Stochastic Finite Element Expansion for Random Media , 1989 .
[9] Andrew M. Stuart,et al. Approximation of Bayesian Inverse Problems for PDEs , 2009, SIAM J. Numer. Anal..
[10] Jean-Paul Calvi,et al. Lagrange interpolation at real projections of Leja sequences for the unit disk , 2012 .
[11] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[12] Karl Kunisch,et al. Estimation Techniques for Distributed Parameter Systems , 1989 .
[13] N. Wiener. The Homogeneous Chaos , 1938 .
[14] A. M. Stuart,et al. Sparse deterministic approximation of Bayesian inverse problems , 2011, 1103.4522.
[15] W. K. Yuen,et al. Optimal scaling of random walk Metropolis algorithms with discontinuous target densities , 2012, 1210.5090.
[16] Andrew M. Stuart,et al. Sparse MCMC gpc finite element methods for Bayesian inverse problems , 2012 .
[17] Christoph Schwab,et al. Sparse, adaptive Smolyak algorithms for Bayesian inverse problems , 2012 .
[18] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[19] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[20] R. DeVore,et al. Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .
[21] Moulay Abdellah Chkifa. On the Lebesgue constant of Leja sequences for the complex unit disk and of their real projection , 2013, J. Approx. Theory.
[22] D. McLaughlin,et al. A Reassessment of the Groundwater Inverse Problem , 1996 .
[23] Albert Cohen,et al. Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs , 2011 .
[24] Thomas Gerstner,et al. Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.
[25] Christoph Schwab,et al. A note on sparse, adaptive Smolyak quadratures for Bayesian inverse problems , 2013 .
[26] Christoph Schwab,et al. Sparse Tensor Discretization of Elliptic sPDEs , 2009, SIAM J. Sci. Comput..
[27] Christoph Schwab,et al. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .
[28] Habib N. Najm,et al. Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..
[29] A. Stuart,et al. ANALYSIS OF SPDES ARISING IN PATH SAMPLING PART II: THE NONLINEAR CASE , 2006, math/0601092.
[30] Albert Cohen,et al. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..
[31] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[32] R. DeVore,et al. ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S , 2011 .
[33] V. Zvyagin,et al. Attractors of equations of non-Newtonian fluid dynamics , 2014 .
[34] Albert Cohen,et al. High-Dimensional Adaptive Sparse Polynomial Interpolation and Applications to Parametric PDEs , 2013, Foundations of Computational Mathematics.