Sparse, adaptive Smolyak quadratures for Bayesian inverse problems

Based on the parametric deterministic formulation of Bayesian inverse problems with unknown input parameter from infinite-dimensional, separable Banach spaces proposed in Schwab and Stuart (2012 Inverse Problems 28 045003), we develop a practical computational algorithm whose convergence rates are provably higher than those of Monte Carlo (MC) and Markov chain Monte Carlo methods, in terms of the number of solutions of the forward problem. In the formulation of Schwab and Stuart, the forward problems are parametric, deterministic elliptic partial differential equations, and the inverse problem is to determine the unknown diffusion coefficients from noisy observations comprising linear functionals of the system?s response. The sparsity of the generalized polynomial chaos representation of the posterior density being implied by sparsity assumptions on the class of the prior (Schwab and Stuart 2012), we design, analyze and implement a class of adaptive, deterministic sparse tensor Smolyak quadrature schemes for the efficient approximate numerical evaluation of expectations under the posterior, given data. The proposed, deterministic quadrature algorithm is based on a greedy, iterative identification of finite sets of most significant, ?active? chaos polynomials in the posterior density analogous to recently proposed algorithms for adaptive interpolation (Chkifa et?al 2012 Report 2012-NN, 2013 Math. Modelling Numer. Anal. 47 253?80). Convergence rates for the quadrature approximation are shown, both theoretically and computationally, to depend only on the sparsity class of the unknown, but are bounded independently of the number of random variables activated by the adaptive algorithm. Numerical results for a model problem of coefficient identification with point measurements in a diffusion problem confirm the theoretical results.

[1]  Jean-Paul Calvi,et al.  On the Lebesgue constant of Leja sequences for the unit disk and its applications to multivariate interpolation , 2011, J. Approx. Theory.

[2]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[3]  Claude Jeffrey Gittelson Adaptive wavelet methods for elliptic partial differential equations with random operators , 2011 .

[4]  C. Schwab,et al.  Sparse Adaptive Approximation of High Dimensional Parametric Initial Value Problems , 2013 .

[5]  Christoph Schwab,et al.  Sparse Approximation Algorithms for High Dimensional Parametric Initial Value Problems , 2012, HPSC.

[6]  Albert Cohen,et al.  High-Dimensional Adaptive Sparse Polynomial Interpolation and Applications to Parametric PDEs , 2014, Found. Comput. Math..

[7]  Y. Marzouk,et al.  A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .

[8]  R. Ghanem,et al.  Stochastic Finite Element Expansion for Random Media , 1989 .

[9]  Andrew M. Stuart,et al.  Approximation of Bayesian Inverse Problems for PDEs , 2009, SIAM J. Numer. Anal..

[10]  Jean-Paul Calvi,et al.  Lagrange interpolation at real projections of Leja sequences for the unit disk , 2012 .

[11]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[12]  Karl Kunisch,et al.  Estimation Techniques for Distributed Parameter Systems , 1989 .

[13]  N. Wiener The Homogeneous Chaos , 1938 .

[14]  A. M. Stuart,et al.  Sparse deterministic approximation of Bayesian inverse problems , 2011, 1103.4522.

[15]  W. K. Yuen,et al.  Optimal scaling of random walk Metropolis algorithms with discontinuous target densities , 2012, 1210.5090.

[16]  Andrew M. Stuart,et al.  Sparse MCMC gpc finite element methods for Bayesian inverse problems , 2012 .

[17]  Christoph Schwab,et al.  Sparse, adaptive Smolyak algorithms for Bayesian inverse problems , 2012 .

[18]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[19]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.

[20]  R. DeVore,et al.  Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .

[21]  Moulay Abdellah Chkifa On the Lebesgue constant of Leja sequences for the complex unit disk and of their real projection , 2013, J. Approx. Theory.

[22]  D. McLaughlin,et al.  A Reassessment of the Groundwater Inverse Problem , 1996 .

[23]  Albert Cohen,et al.  Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs , 2011 .

[24]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[25]  Christoph Schwab,et al.  A note on sparse, adaptive Smolyak quadratures for Bayesian inverse problems , 2013 .

[26]  Christoph Schwab,et al.  Sparse Tensor Discretization of Elliptic sPDEs , 2009, SIAM J. Sci. Comput..

[27]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .

[28]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[29]  A. Stuart,et al.  ANALYSIS OF SPDES ARISING IN PATH SAMPLING PART II: THE NONLINEAR CASE , 2006, math/0601092.

[30]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[31]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[32]  R. DeVore,et al.  ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S , 2011 .

[33]  V. Zvyagin,et al.  Attractors of equations of non-Newtonian fluid dynamics , 2014 .

[34]  Albert Cohen,et al.  High-Dimensional Adaptive Sparse Polynomial Interpolation and Applications to Parametric PDEs , 2013, Foundations of Computational Mathematics.