Modulated spin orbit torque in a Pt/Co/Pt/YIG multilayer by nonequilibrium proximity effect

We have compared the spin orbit torque (SOT) induced magnetization switching in Pt/Co/Pt/Y3Fe5O12 (YIG) and Pt/Co/Pt/SiO2 multilayers. The critical switching current in Pt/Co/Pt/YIG is almost half of that in Pt/Co/Pt/SiO2. Through harmonic measurements, we demonstrated the enhancement of the effective spin Hall angle in Pt/Co/Pt/YIG. The increased efficiency of SOT is ascribed to the nonequilibrium proximity effect at the Pt/YIG interface, which suppresses the spin current reflection and enhances the effective spin accumulation at the Co/Pt interface. Our method can effectively reduce the switching current density and provide another way to modulate SOT.

[1]  A. Fert,et al.  Large enhancement of the spin Hall effect in Au by side-jump scattering on Ta impurities , 2017, 1708.09214.

[2]  S. Rezende,et al.  Giant spin-charge conversion driven by nanoscopic particles of Ag in Pt , 2017 .

[3]  A. I. Figueroa,et al.  Enhanced spin-orbit torque by engineering Pt resistivity in Pt / Co / Al O x structures , 2017 .

[4]  C. Felser,et al.  Magnetic antiskyrmions above room temperature in tetragonal Heusler materials , 2017, Nature.

[5]  J. Zhao,et al.  Enhanced spin-orbit torques in MnAl/Ta films with improving chemical ordering , 2017, 1702.07990.

[6]  A. Fert,et al.  Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces , 2016, Nature.

[7]  Hyunsoo Yang,et al.  Enhanced Spin-Orbit Torque via Modulation of Spin Current Absorption. , 2016, Physical review letters.

[8]  S. Wimmer,et al.  Tuning Spin Hall Angles by Alloying. , 2016, Physical review letters.

[9]  J. Zhao,et al.  Anomalous Hall effect and spin-orbit torques in MnGa/IrMn films: Modification from strong spin Hall effect of the antiferromagnet , 2016, 1609.08245.

[10]  Nan Zhang,et al.  Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure. , 2016, Nature materials.

[11]  O. A. Tretiakov,et al.  Microscopic theory of spin-orbit torques in two dimensions , 2016, 1603.07994.

[12]  Zhe Yuan,et al.  Giant Room Temperature Interface Spin Hall and Inverse Spin Hall Effects. , 2015, Physical review letters.

[13]  Wei Zhang,et al.  Antiferromagnetic Spin Seebeck Effect. , 2015, Physical review letters.

[14]  R. Duine,et al.  New perspectives for Rashba spin-orbit coupling. , 2015, Nature materials.

[15]  Abhijit Ghosh,et al.  Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers , 2015, Nature Physics.

[16]  C. Chien,et al.  Physical origins of the new magnetoresistance in Pt/YIG. , 2014, Physical review letters.

[17]  H. Jaffrès,et al.  Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces. , 2013, Physical review letters.

[18]  H. Ohno,et al.  Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements , 2013, 1310.4879.

[19]  A. Thomas,et al.  Time-resolved measurement of the tunnel magneto-Seebeck effect in a single magnetic tunnel junction. , 2013, The Review of scientific instruments.

[20]  F. Freimuth,et al.  Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. , 2013, Nature nanotechnology.

[21]  D. Ralph,et al.  Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. , 2012, Physical review letters.

[22]  I. Miron,et al.  Current-induced spin–orbit torques , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[24]  B. V. van Wees,et al.  Spin caloritronics. , 2011, Nature materials.